Stable Diffusion Prompt用法

StableDiffusion是一个能够根据提示词生成图像的工具,用户可以通过正向提示词如HDR、专业、鲜艳色彩等提升图像质量,或者使用负向提示词避免不想要的元素。此外,可以结合不同艺术家风格和权重比例来定制图像细节,例如提高面部细节的清晰度或融合不同的艺术风格。图片大小和Prompt数量也会影响生成效果,同时支持使用emoji和OR语法进行更精细的控制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Stable Diffusion可以根据你输入的提示词(prompt)来绘制出想象中的画面。

1、正向提示词(Prompt):

提高图像质量的prompt:

prompt用途
HDR, UHD, 64K(HDR、UHD、4K、8K和64K)这样的质量词可以带来巨大的差异提升照片的质量
Highly detailed画出更多详细的细节
Studio lighting添加演播室的灯光,可以为图像添加一些漂亮的纹理
Professional加入该词可以大大改善图像的色彩对比和细节
Vivid Colors给图片添加鲜艳的色彩,可以为你的图像增添活力
Bokeh虚化模糊了背景,突出了主体,像iPhone的人像模式
High resolution scan让你的照片具有老照片的样子赋予年代感
Sketch素描
Painting绘画

可以在我们的prompt中加入对应类型画家的风格

艺术风格艺术家
肖像画(Portraits)Derek Gores, Miles Aldridge, Jean Baptiste-Carpeaux, Anne-Louis Girodet
风景画(Landscape)Alejandro Bursido, Jacques-Laurent Agasse, Andreas Achenbach, Cuno Amiet
恐怖画(Horror)H.R.Giger, Tim Burton, Andy Fairhurst, Zdzislaw Beksinski
动漫画(Anime)Makoto Shinkai, Katsuhiro Otomo, Masashi Kishimoto, Kentaro Miura
科幻画(Sci-fi)Chesley Bonestell, Karel Thole, Jim Burns, Enki Bilal
摄影(Photography)Ansel Adams, Ray Earnes, Peter Kemp, Ruth Bernhard
概念艺术家(视频游戏)(Concept artists (video game))Emerson Tung, Shaddy Safadi, Kentaro Miura

示例:

masterpiece, best quality, extremely detailed face, perfect lighting,

2、反向提示词(Negative prompt):

根据画面产出加不想出现的画面。

常用反向提示词:

negative prompt描述
mutated hands and fingers变异的手和手指
deformed畸形的
bad anatomy解剖不良
disfigured毁容
poorly drawn face脸部画得不好
mutated变异的
extra limb多余的肢体
ugly丑陋
poorly drawn hands手部画得很差
missing limb缺少的肢体
floating limbs漂浮的四肢
disconnected limbs肢体不连贯
malformed hands畸形的手
out of focus脱离焦点
long neck长颈
long body身体长

(low quality, worst quality:1.4), (bad_prompt:0.8), (monochrome:1.1), (greyscale), username, watermark, signature, text, logo, nsfw

nsfw(not safe for work)=涩图

3、权重比例

建议直接使用 (PromptA:权重)用来提高单词的权重,多个括号的权重公式如下:

  • (PromptA:权重):用于提高或降低该提示词的权重比例
  • (PromptA):PromptA的权重为1.1=(PromptA:1.1)
  • {PromptB}: PromptB的权重为1.05=(PromptB:1.05)
  • [PromptC]: PromptC的权重减弱0.952=(PromptC:0.952)
  • ((PromptD)=(PromptD:1.1*1.1)
  • {{PromptE}}=(PromptE:1.05*1.05)
  • [[PromptF]]=(PromptF:0.952*0.952)

越靠前的Tag权重越大

比如景色Tag在前,人物就会小,相反的人物会变大或半身。

4、生成图片的大小会影响Prompt的效果

图片越大需要的Prompt越多,不然Prompt会相互污染。

5、使用emoji表情符号

Prompt支持使用emoji,且表现力较好,可通过添加emoji达到表现效果。如😍形容表情,🖐可修手

6、“+” 、“ AND”、“|” 用法

“+”和“ AND ”都是用于连接短Tag,但AND两端要加空格。"+"约等于" AND "

 “|” 为循环绘制符号(融合符号)

(Prompt A:w1)|(Prompt B:w2)

以上表达适用于WebUI,w1、w2为权重。AI会对A、 B两Prompt进行循环绘制。可往后无限加入Prompt。

如头发颜色的融合[silver|purple] hair,也可以使用AND语法 如 white hair AND green hair (注意AND必须用大写)

7、OR语法

用于前部分绘制物体A,后半部分绘制物体B。

[PromptA:PromptB:0.9]

如[dog:cat:0.9] 指前面90%画狗后面10%画猫;

如[dog:cat:30] 指前面30步画狗后面的画猫;

8、BREAK语法

用于在复杂的提示词序列中打断前后提示词之间的逻辑联系,从而避免不必要的词汇污染或混淆。

PromptA BREAK PromptB

例如,如果要生成一个具有特定发型、衣物和颜色的角色,可以使用BREAK来分隔这些提示词,如“黄发BREAK白体恤BREAK蓝裤子”,这样模型就能清晰地知道应该将黄色应用于头发,白色应用于体恤,蓝色应用于裤子。 

### 使用提示矩阵在Stable Diffusion中高效生成不同提示的图像 #### 提示矩阵的概念 提示矩阵允许用户定义多个不同的文本提示组合,从而一次性生成多种变化的图像。这种方法极大地提高了创作效率和多样性。 #### 实现方式 为了实现这一目标,在配置文件或命令行界面中指定一系列分隔符来区分各个独立的提示词组。通常采用竖线`|`作为默认分割符号[^1]: ```plaintext 正面提示 | 变体一 | 变体二 | ... 负面提示 | 不变因素A | 不变因素B | ... ``` 每一对正负向提示之间同样可以加入权重调整因子以微调各成分的影响程度。 #### Python脚本实例 下面是一个简单的Python脚本来展示如何利用API接口批量提交带有不同参数的任务请求并收集返回的结果: ```python import requests from PIL import Image from io import BytesIO def generate_images(api_url, positive_prompts, negative_prompts=None): """ 批量生成基于给定提示列表的图片 参数: api_url (str): API端点地址 positive_prompts (list[str]): 正面提示字符串数组 negative_prompts (list[str], optional): 负面提示字符串数组,默认为空 返回值: list[PIL.Image.Image]: 图片对象集合 """ payload = { "prompt": "\n".join([f"{p}" for p in positive_prompts]), "negative_prompt": "" if not negative_prompts else "\n".join(negative_prompts), "width": 768, "height": 768, "num_inference_steps": 50, "guidance_scale": 7.5, "seed": -1, "batch_size": len(positive_prompts) } response = requests.post(url=api_url, json=payload) images = [] for img_data in response.json()["images"]: image = Image.open(BytesIO(base64.b64decode(img_data))) images.append(image) return images ``` 此函数接受一组或多组正面与负面提示,并通过POST请求发送至指定的服务端进行处理;最终解析响应数据流得到对应的PIL `Image` 对象以便进一步操作或保存到本地磁盘上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值