TensorFlow
Wayne2019
这个作者很懒,什么都没留下…
展开
-
AI challenger 场景分类 train test softmax
与前文Ai challenger 场景分类: train softmax using tfrecord的区别见代码前面的changes说明。目前tfrecord坑很多,参见 [Enhancement] Redesigning TensorFlow’s input pipelines #7951 目前赤裸的softmax过拟合严重:0.7 vs 0.18# -*- coding: utf-8 -*-原创 2017-09-21 23:34:20 · 2655 阅读 · 6 评论 -
TensorFlow全流程样板代码:以ai challenger 场景分类和slim预训练模型为例
# -*- coding: utf-8 -*-"""Created on Wed Sep 20 16:05:02 2017@author: wayneFEELINGS目前原生tf和tfrecord的坑还是挺多的,需要自己写的“通用代码”较多,尤其是input pipeline和训练/验证的【流程控制和监控准确率】等已经在最新的1.3版本中引入了datasets,未来的1.4版本特性参见ht原创 2017-10-12 02:23:25 · 2481 阅读 · 1 评论 -
AI challenger 场景分类 生成tfrecord文件
与AI challenger 场景分类(1) 生成tfrecord文件 不同,这里我们生成验证集的tfrecord文件,另外将图片的id (string类型)也存入tfrecord, 方便后续使用。用时:~5 min 原图大小:463.9 M tfrecord文件大小:8.7 G # -*- coding: utf-8 -*-"""Created on Thu Sep 7 19:25:38原创 2017-09-21 22:46:40 · 892 阅读 · 2 评论 -
使用Tensorflow物体识别API抠出视频中的猪
Tensorflow Object Detection API 猪检测代码以及后续进行猪分类的程序都开源在github了。主要在官方的demo code上做了如下修改:扩展det出的box,以更好地包裹目标,crop时限定不超出图像边界[expand_ratio]如检测出pig, animal可能都是对的,可以依据运行结果调整接受规则,抑制检测到的概率比较大的无关类别,提高鲁棒性[class_原创 2017-12-08 11:07:36 · 4804 阅读 · 2 评论 -
Tensorflow slim resnet v2源码阅读笔记
主要涉及: https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_utils.py首先建议阅读Tensorflow和slim的官方文档,获取原创 2017-12-10 09:58:03 · 4605 阅读 · 0 评论 -
Tensorflow object detection API 源码阅读笔记:Mask R-CNN
"""The ground-truth label is 1 if the anchor is positive, and is 0 if the anchor is negative. An anchor is labeled as positive if:(a) the anchor is the one with highest IoU overlap with a ground-tru原创 2017-12-20 10:13:50 · 3959 阅读 · 6 评论 -
Tensorflow object detection API 源码阅读笔记:架构
在之前的博文中介绍过用tf提供的预训练模型进行inference,非常简单。这里我们深入源码,了解检测API的代码架构,每个部分的深入阅读留待后续。首先官方文档还是比较丰富的,可以先全看一遍,然后和核心的模型有关的文档是: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/definin原创 2017-12-12 00:42:03 · 8191 阅读 · 5 评论 -
Tensorflow object detection API 源码阅读笔记:基本类(1)
之前主要在结合paper看架构,在进入Fast R-CNN部分之前,先仔细研究一下一些基本类的具体实现。和当时读OpenFOAM的源代码套路差不多,不过OpenFOAM的变态c++让人特别绝望。"""object_detection/core/matcher.py"""class Match(object): """Class to store results from the matche原创 2017-12-14 22:33:33 · 3949 阅读 · 0 评论 -
Tensorflow object detection API 源码阅读笔记:RFCN
有了前面Faster R-CNN的基础,RFCN就比较容易了。"""object_detection/meta_architectures/rfcn_meta_arch.pyThe R-FCN meta architecture is similar to Faster R-CNN and only differs in thesecond stage. Hence this class inh原创 2017-12-16 11:25:07 · 2517 阅读 · 2 评论 -
Tensorflow object detection API 源码阅读笔记:Fast r-cnn
Update: 建议先看从编程实现角度学习Faster R-CNN,比较直观。这里由于源代码抽象程度较高,显得比较混乱。知乎文章中ProposalTargetCreator从RoIs选择一部分(比如128个)用以训练,本应该对应def _loss_box_classifier,但是实现不完全一致,又回到def _postprocess_rpn了,统一在Tensorflow object dete原创 2017-12-15 11:13:07 · 2905 阅读 · 0 评论 -
AI challenger 场景分类 train test 多层cnn
本文复现AI challenger的官方baseline模型,数据通过tfrecord和队列来供给。 “This simple model consists of three convolutional layers, three max pool layers and two fully connected layers. Local response normalization and dro原创 2017-09-22 23:48:24 · 2494 阅读 · 5 评论 -
使用tf-slim的inception_resnet_v2预训练模型进行图像分类
输入是jpg代码:#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Fri Sep 29 16:25:16 2017@author: wayne"""'''我们用的是tf1.2,最新的tf1.3地址是https://github.com/tensorflow/models/tree/master/research/sli原创 2017-09-27 09:33:02 · 11402 阅读 · 1 评论 -
AI challenger 场景分类(1) 生成tfrecord文件
用时:30 min 原图大小:3.5 G tfrecord文件大小:65.3 G (amazing! 注意原图是jpg压缩的)# -*- coding: utf-8 -*-"""Created on Thu Sep 7 19:25:38 2017@author: waynehttp://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/r原创 2017-09-15 05:37:28 · 1297 阅读 · 0 评论 -
TensorFLow 不同大小图片的TFrecords存取
全部存入一个TFrecords文件,然后按照batch_size读取。 不多写了,直接贴代码。原创 2017-09-08 14:54:23 · 3842 阅读 · 3 评论 -
AI challenger 场景分类(2) 读取tfrecord文件
tf.train.batch# -*- coding: utf-8 -*-"""Created on Thu Sep 14 18:02:41 2017@author: waynecifar10 官方样例 https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_input.pytens原创 2017-09-15 07:15:12 · 1198 阅读 · 0 评论 -
Ubuntu下TensorFLow和TensorLayer安装
终端中查看python路径和版本wayne@wayne-GE60-2OC-2OD-2OE:~$ which python/home/wayne/anaconda3/bin/pythonwayne@wayne-GE60-2OC-2OD-2OE:~$ whereis pythonpython: /usr/bin/python /usr/bin/python2.7 /usr/bin/python2.原创 2017-09-07 16:43:40 · 1614 阅读 · 0 评论 -
TensorFLow 读取图片1:初探四种从文件读取的方式
本文记录一下TensorFLow的几种图片读取方法,官方文档有较为全面的介绍。1.使用gfile读图片,decode输出是Tensor,eval后是ndarrayimport matplotlib.pyplot as pltimport tensorflow as tfimport numpy as npprint(tf.__version__)image_raw = tf.gfile.Fast原创 2017-09-07 17:27:48 · 23519 阅读 · 2 评论 -
Ai challenger 场景分类: 检查类别平衡
import pandas as pdimport jsonfrom collections import Counterimport seaborn as snsimport matplotlib.pyplot as pltwith open('../ai_challenger_scene_train_20170904/scene_train_annotations_20170904.js原创 2017-09-19 02:06:53 · 1078 阅读 · 0 评论 -
Ai challenger 场景分类: train softmax using tfrecord
# -*- coding: utf-8 -*-"""Created on Wed Sep 20 16:05:02 2017@author: waynereferences:输入数据https://indico.io/blog/tensorflow-data-inputs-part1-placeholders-protobufs-queues/https://indico.io/blog/t原创 2017-09-21 19:35:41 · 855 阅读 · 0 评论 -
AI challenger 场景分类 tensorflow inception-resnet-v2 LB: 0.94361
模型采用tf-slim在imagenet上训练的inception-resnet-v2,可以选择训练哪些层,如只重新训练最后一层,或重新训练后面的多层等等。没有采取特殊的数据增强,用的tf-slim默认的inception输入方式。采用如下参数配置线上得分0.94361。 learning_rate=0.0001 batch_size=32 num_epochs=80 具体情况: trai原创 2017-10-06 04:46:00 · 2927 阅读 · 7 评论 -
使用tf-slim的ResNet V1 152和ResNet V2 152预训练模型进行图像分类
本文使用tf-slim的ResNet V1 152和ResNet V2 152预训练模型进行图像分类,并研究slim网络的scope命名等。tf-slim文档不太多,实现过程中多参考官网的源码: https://github.com/tensorflow/models/tree/master/research/slim 注意resnet v2的预处理有点不一样,输入是299而不是224 ResN原创 2017-10-02 04:25:36 · 14697 阅读 · 11 评论 -
Tensorflow object detection API 源码阅读笔记:RPN
Update: 建议先看从编程实现角度学习Faster R-CNN,比较直观。这里由于源代码抽象程度较高,显得比较混乱。faster_rcnn_meta_arch.py中这两个对应知乎文章中RPN包含的3*3和1*1卷积: rpn_box_predictor_features = slim.conv2d(rpn_features_to_crop self._first_stage_box_p原创 2018-01-03 23:17:13 · 4957 阅读 · 2 评论