UNet

U-Net是一种常用于医学图像分割的深度学习模型,尤其在Kaggle竞赛中表现出色。其特点包括VALID而非SAME填充,低层和高层特征匹配,使用加权交叉熵损失分离实例,以及弹性变形处理。为了处理细胞间隙,U-Net通过赋予较大权重来确保分割效果。此外,文章探讨了DeepLab系列的对齐原则,以及U-Net与其他语义分割网络如FCN、SegNet和DeconvNet的相似性和差异性。
摘要由CSDN通过智能技术生成

kaggle上的常客(医学图像领域比较常用,也是car分割的冠军模型):
https://www.kaggle.com/c/data-science-bowl-2018/discussion/54426
U-Net: Convolutional Networks for Biomedical Image Segmentation

这里写图片描述

  • VALID padding not SAME padding(因为边界用了镜像处理)
  • matched lower and upper features after cropping lower feature(The cropping is necessary due to the loss of border pixels in every convolution:注意看图1中的虚线框,就是与右分支对应的位置去crop左分支)
  • weighted cross entropy loss to separate instances
  • elastic deformations

边界的镜像处理:
这里写图片描述

加权处理:类别平衡和给两个细胞之间的空隙更大的权重

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值