线性单元模板和SGD以及学习率的一些介绍

本文介绍了线性单元与感知器的区别,重点讨论了随机梯度下降(SGD)的优势,以及学习率对非凸函数优化的影响。讨论了学习率的选择策略,包括经验设定、数据集大小的影响、动态调整学习率的方法,并提到了指数衰减法和SVRG算法。文章强调了学习率适中对于模型训练的重要性。
摘要由CSDN通过智能技术生成

线性单元和感知器的区别在于激活函数的不同:

 线性单元:

 感知器:

 BGD:每次更新的迭代,要遍历训练数据中所有的样本进行计算,我们称这种算法叫做批梯度下降(Batch Gradient Descent)

SGD:每次更新的迭代,只计算一个样本。这样对于一个具有数百万样本的训练数据,完成一次遍历就会对更新数百万次,我们称为随机梯度下降算法(Stochastic Gradient Descent, SGD)。

随机梯度下降所带来的波动有个好处就是,对于类似盆地区域(即很多局部极小值点)那么这个波动的特点可能会使得优化的方向从当前的局部极小值点跳到另一个更好的局部极小值点,这样便可能对于非凸函数,最终收敛于一个较好的局部极值点,甚至全局极值点。

import matplotlib.pyplot as plt
import numpy as np
# 线性单元
def h(m): # 求和
    return  (w1 * m + z)
# 激活函数, y=x简单线性, 可以将想拟合的函数写入,比如一些非凸函数
# 对非凸函数,初始值的不同,可导致最终训练到不同的鞍点和局部最小值
def f(x):
    return x
x1 = [3, 5, 7, 8, 10]
y = [33, 49, 72, 79, 101]

z = -0.4 # 权重
w1 = 0.2

a = 0.00001 # 学习率,太高会无法拟合,跳出或循环在一个范围内
e = 0.00001
i = 0
j = 0
while True:
    if abs(y[i] - f(h(x1[i]))) < e and abs((y[i] - f(h(x1[i]))) * x1[i]) < e: # 偏导同时趋于零
        break
    else:
        z = z + a * (y[i] - f(h(x1[i])))# 迭代权重值
      
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值