接着上一篇文章,这个主要实现了垂直,垂直于两个线段的直线交于一点,直接看效果:
原理:
一条线段由两个点P1(x1,y1),P2(x2,y2)组成,其中的这条线段所在的直线l1的斜率可求:
k0 = (y2 - y1) / (x2 - x1)
在平面直角坐标系中和l1互相垂直的直线的斜率为k2
则有
k0×k2 = -1
也就是说两条互相垂直的直线的斜率互为负倒数。
知道这个后也就好说了,假设与l1垂直的直线的斜率为:
k2 = (x1 - x2) / (y2 - y1)
根据一次函数的解析式:y=kx+b
把其中一点带入到解析式中,就可以求出,b值来了。
Beeline perpendicularInSegment(LineSegment&l, PointEx&p) {
Beeline beeline;
if (abs(l.startPoint.x - l.endPoint.x) < EP){//平行于y轴
beeline.a = 0;
beeline.b = 1;
beeline.c = -p.y;
} else if(abs(l.startPoint.y - l.endPoint.y) <EP ) {//平行于x轴
beeline.a = 1;
beeline.b = 0;
beeline.c = -p.x;
} else {//即不平行于x轴又不平行于y轴
double a = (l.startPoint.x - l.endPoint.x) / (l.endPoint.y - l.startPoint.y);
double b = p.y - a*p.x;
if (a < 0){//规定a值为正
beeline.a = -a;
beeline.b = 1;
beeline.c = -b;
} else if(a > 0) {
beeline.a = a;
beeline.b = -1;
beeline.c = b;
}
}
return beeline;
}
代码下载
以上!