全功能AI大模型客户端AI as Workspace

在这里插入图片描述

简介

什么是 AI as Workspace ?

AI as Workspace(AIaW) 是一个精心设计的 AI 客户端,全功能,轻量级;支持多工作区、插件系统、跨平台、本地优先+实时云同步、Artifacts

主要特点

  • 跨平台支持:响应式界面设计,适配各种设备(手机、电脑等)。
  • 全功能和轻量级:提供全面的功能,同时保持高性能和快速启动。
  • 多服务商支持:兼容 OpenAIAnthropicGoogle 等多个 AI 服务。
  • 多工作区支持:用户可以创建多个工作区,将不同主题的对话分隔开,支持嵌套文件夹管理。
  • 插件系统:内置多个插件(如计算器、文档解析等),并且可以通过插件市场安装更多插件。
  • 实时云同步:用户数据首先存储在本地,登录后可以实现跨设备的实时同步。
  • 动态提示词:支持创建动态可复用的提示词,提升用户交互体验。
  • Artifacts管理:用户可以将助手的回答转化为可编辑的 Artifacts,带有版本控制和代码高亮功能。

细节设计

  • 用户输入预览:提供实时输入内容预览,提升用户体验。
  • 代码粘贴优化:自动将从 VSCode 复制的代码用代码块包裹并标明语言。
  • 文本文件支持:支持直接添加文本文件,避免手动粘贴占用显示空间。
  • 引用功能:通过拖选消息内容快速引用,方便针对性提问。
  • 键盘控制:支持设置快捷键,便于快速滚动和操作。

AI as Workspace 是一个开源的、全功能的 AI 客户端,旨在提供高效的用户体验和灵活的使用场景,适用于需要高效管理和使用 AI 功能的用户。

准备

如果你希望使用内置的文档解析插件,则需要登录 LlamaCloud 并创建 API Key

这里有关于文档解析的详细说明:https://docs.aiaw.app/usage/file-parse.html,我们只要知道,目前是免费的就可以了

打开地址: https://cloud.llamaindex.ai,选择登录方式

登录成功后,点击左侧菜单 API Keys

Generate New Key 创建一个 key

Create secret key 开始生成

后续不会再显示,所以要妥善保管

顺便说一下,如果中文文档多,可以试试将 OCR 语言设置为 ch_sim

安装

在群晖上以 Docker 方式安装。

在注册表中搜索 krytro ,选择第一个 krytro/aiaw,版本选择 latest

本文写作时, latest 版本对应为 v1.3.9

端口

本地端口不冲突就行,不确定的话可以用命令查一下

# 查看端口占用
netstat -tunlp | grep 端口号
本地端口容器端口
90109010

环境

可变
LLAMA_CLOUD_API_KEYLlamaCloud 网站上创建的 API Key

需要说明的是,如果你不打算使用内置的文档解析插件,可以不用设置LLAMA_CLOUD_API_KEY 参数

命令行安装

如果你熟悉命令行,可能用 docker cli 更快捷

# 运行容器(快速安装)
docker run -d \
   --restart unless-stopped \
   --name aiaw \
   -p 9010:9010 \
   krytro/aiaw:latest

# 运行容器(使用内置的文档解析插件)
docker run -d \
   --restart unless-stopped \
   --name aiaw \
   -p 9010:9010 \
   -e LLAMA_CLOUD_API_KEY=xxxxxxx \
   krytro/aiaw:latest

也可以用 docker-compose 安装,将下面的内容保存为 docker-compose.yml 文件

version: '3'

services:
  aiaw:
    image: krytro/aiaw:latest
    container_name: aiaw
    restart: unless-stopped
    ports:
      - 9010:9010
    environment:
      # 如果要使用内置的文档解析插件
      LLAMA_CLOUD_API_KEY: xxxxxxx

然后执行下面的命令

# 新建文件夹 aiaw
mkdir -p /volume1/docker/aiaw

# 进入 aiaw 目录
cd /volume1/docker/aiaw

# 将 docker-compose.yml 放入当前目录

# 一键启动
docker-compose up -d

运行

在浏览器中输入 http://群晖IP:9010 就能看到主界面

服务商

第一次需要 配置服务商

老苏的安装的模型都是通过 One API 统一管理的

文章传送门:

其中 Ollama 中有 4 个模型,再加上 deepseek-free-apikimi-free-api

所以服务商配置如下

  • 服务商:选择了 OpenAI
  • API 地址:设置了 One API 的地址,老苏的是 http://192.168.0.197:3033/v1
  • API Key:使用的是 One API 的令牌;
  • 模型:使用的是 One API 中设置的模型名称;

下拉到 界面 部分,点 获取模型列表,能获取到 One API 中所有的模型

工作区

可以新建工作区,也可以用示例工作区

聊天时,可以切换模型

如果你启用了内置的 文档解析插件,可以上传个文件

然后针对文档进行提问

助手

AI as Workspace 内置了丰富的助手

可以添加为全局或者某个工作区

能看到助手的详细设置,支持为每个助手设置单独的供应商和模型

切换了助手后继续提问

如果要脱离文档,可以新建一个对话

AI as Workspace 的功能远不止这些,左下角可以快速找到 使用指南

参考文档

NitroRCr/AIaW: AI as Workspace - 精心设计的 AI (LLM) 客户端。 全功能,轻量级;支持多工作区、插件系统、跨平台、本地优先+实时云同步、Artifacts
地址:https://github.com/NitroRCr/AIaW

AI as Workspace
地址:https://docs.aiaw.app/

功能概览 | AI as Workspace
地址:https://docs.aiaw.app/usage/

示例工作区 - AI as Workspace
地址:https://aiaw.app

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨浦老苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值