适配Ollama的前端界面Open WebUI

在这里插入图片描述

在前文 本地大模型运行框架Ollama 中,老苏留了个尾巴,限于篇幅只是提了一下 Open WebUI,有网友留言说自己安装没搞定,今天我们来补上

文章传送门:本地大模型运行框架Ollama

什么是 Open WebUI ?

Open WebUI 是针对 LLM 的用户友好的 WebUI,支持的 LLM 运行程序包括 OllamaOpenAI 兼容的 API

Open WebUI 系统旨在简化客户端(您的浏览器)和 Ollama API 之间的交互。此设计的核心是后端反向代理,可增强安全性并解决 CORS 问题。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Open WebUI 功能演示

【说明】:

  • 因为老苏的小机器不支持 Nvidia GPU,所以下面👇的安装示例仅支持 CPU

  • 本文假设你已经在 11434 端口启动了 Ollama 服务,但是否在本机是无所谓的。

安装

在群晖上以 Docker 方式安装。

镜像下载

官方没有在 docker hub 上发布镜像,而是发布在 ghcr.io,地址在 https://github.com/open-webui/open-webui/pkgs/container/open-webui

在这里插入图片描述

SSH 客户端登录到群晖后,依次执行下面的命令

# 新建文件夹 open-webui 和 子目录
mkdir -p /volume1/docker/open-webui/data

# 进入 open-webui 目录
cd /volume1/docker/open-webui

# 拉取镜像
docker pull ghcr.io/open-webui/open-webui:main

如果没有科学上网,很可能会拉不动,可以试试 docker 代理网站:https://dockerproxy.com/,但是会多几个步骤

# 如果拉不动的话加个代理
docker pull ghcr.dockerproxy.com/open-webui/open-webui:main

# 重命名镜像(如果是通过代理下载的)
docker tag ghcr.dockerproxy.com/open-webui/open-webui:main ghcr.io/open-webui/open-webui:main

# 删除代理镜像(如果是通过代理下载的)
docker rmi ghcr.dockerproxy.com/open-webui/open-webui:main

下载完成后,可以在 映像 中找到

在这里插入图片描述

命令行安装

如果你熟悉命令行,可能用 docker cli 更快捷

# 运行容器(仅CPU)
docker run -d \
   --restart unless-stopped \
   --name ollama-webui \
   -p 11433:8080 \
   -v $(pwd)/data:/app/backend/data \
   -e OLLAMA_API_BASE_URL=http://192.168.0.197:11434/api \
   -e WEBUI_SECRET_KEY=TkjGEiQ@5K^j \
   ghcr.io/open-webui/open-webui:main

环境变量的简单说明

没有找到官方说明,但是这两个是必须要设置的

可变
OLLAMA_API_BASE_URLOllama 服务器的地址
WEBUI_SECRET_KEY可以理解成密码,老苏是用 Vaultwarden 生成的

也可以用 docker-compose 安装,将下面的内容保存为 docker-compose.yml 文件

version: '3'

services:
  ollama-webui:
    image: ghcr.io/open-webui/open-webui:main
    container_name: ollama-webui
    restart: unless-stopped
    ports:
      - 11433:8080
    volumes:
      - ./data:/app/backend/data
    environment:
      - OLLAMA_API_BASE_URL=http://192.168.0.197:11434/api
      - WEBUI_SECRET_KEY=TkjGEiQ@5K^j

然后执行下面的命令

# 进入 open-webui 目录
cd /volume1/docker/open-webui

# 将 docker-compose.yml 放入当前目录

# 一键启动
docker-compose up -d

在这里插入图片描述

运行

在浏览器中输入 http://群晖IP:11433 就能看到登录界面

第一次需要注册账号

在这里插入图片描述

登录成功后的主界面

在这里插入图片描述

点左下角的用户名,进 Settings

也可以点 Select a model 后面的设置图标;

在这里插入图片描述

Modles 中可以添加、删除和切换模型

感谢网友 Zzz 推荐的 qwen:0.5b,这是阿里云推出的基于 Transformer 的大型语言模型,推理最低内存需求小于 2GB ,在老苏的机器上,运行都非常流畅。

可以在 Ollama 中用命令行安装

在这里插入图片描述

感谢网友 潇雨 推荐的 gemma:2b,这是 Google 及其 DeepMind 团队开发的新型开放模型。

也可以在这里直接下载

  • ①中输入模型名称及版本
  • ②点击开始下载
  • ③跳转到模型库查询页面

在这里插入图片描述

过程中有进度显示

在这里插入图片描述

回到首界面,选择模型

在这里插入图片描述

刚下载的模型可能要等一会才会显示出来,现在老苏已经有了 2 模型了

在这里插入图片描述

现在可以开始提问了

在这里插入图片描述

同样的问题,换个模型试试

在这里插入图片描述

目前的这种应用场景下,老苏暂时倾向于使用 qwen:0.5b ,不仅速度快,答案看起来也更丰满一些

在这里插入图片描述

参考文档

open-webui/open-webui: User-friendly WebUI for LLMs (Formerly Ollama WebUI)
地址:https://github.com/open-webui/open-webui

🏡 Home | Open WebUI
地址:https://docs.openwebui.com/

<think>好的,我现在需要解决用户的问题:“如何将openweb-ui功能通过h5实现”。首先,我要理解用户的需求。用户之前问过关于如何将DeepSeek知识库接入H5开发,现在转向另一个工具OpenWeb-UI,想了解如何将其功能在H5中实现。可能需要明确OpenWeb-UI是什么,但根据名字推测,这可能是一个开源的Web用户界面框架或工具,类似一些UI组件库。但不确定具体是什么,可能需要进一步验证。 首先,我需要确认OpenWeb-UI的定义。可能用户指的是某个特定的开源项目,比如OpenWebUI,一个可扩展的、功能丰富的AI用户界面,支持本地运行语言模型。或者可能是指其他的UI框架。假设用户指的是类似聊天界面AI工具,可能用于与大模型交互,类似于之前的DeepSeek知识库接入。 接下来,用户希望将OpenWeb-UI的功能通过H5实现。H5即HTML5,通常指移动端网页开发。用户可能想在自己的H5应用中集成类似OpenWeb-UI的界面和功能,比如聊天机器人、交互式UI组件等。 需要拆解OpenWeb-UI的主要功能。比如,假设它包含聊天界面、消息展示、输入框、历史记录、与后端API交互等。那么,如何在H5中实现这些功能?可能需要前端开发技术,如HTML、CSS、JavaScript,结合Ajax或WebSocket与后端通信。 然后,思考用户可能的实际应用场景。用户可能是一个开发者,需要在H5页面中嵌入一个类似OpenWeb-UI的界面,用于用户与AI模型的交互,比如客服系统、智能助手等。用户可能希望了解具体步骤,包括界面设计、前后端交互、API调用等。 接下来,需要给出步骤。首先,明确OpenWeb-UI的核心功能,然后分解实现步骤:UI组件开发、前后端通信、数据渲染、状态管理等。如果OpenWeb-UI本身是开源项目,可能需要查看其文档,了解如何集成或参考其实现方式。 考虑到用户之前的问题是关于接入知识库,可能用户现在希望在前端实现更复杂的UI交互,而不仅仅是调用API。因此,回答需要涵盖UI构建和功能集成两个方面。 需要确保回答结构清晰,分步骤说明,包括可能的代码示例,如使用Vue或React框架构建组件,如何处理用户输入,如何与后端API交互,如何渲染响应数据等。同时,考虑到H5的移动端适配,可能需要提到响应式设计。 另外,用户可能关心如何维护状态,比如对话历史、用户身份验证等,这些也需要在步骤中涉及。此外,安全性问题,如跨域请求、API密钥保护,是否需要后端代理,这些也需要提及。 可能还需要对比之前的DeepSeek接入,指出异同点,帮助用户理解两者的区别和相似之处,但用户没有明确提到,所以可能不需要深入。 最后,总结关键点和注意事项,比如性能优化、兼容性测试、用户体验等,确保用户能够全面了解实现过程。</think>将 **OpenWebUI** 的功能通过 H5(HTML5)实现,通常是指利用 Web 技术(HTML/CSS/JavaScript)构建类似 OpenWebUI 的交互界面,并集成 AI 模型的对话、推理等功能。以下是具体实现步骤和核心要点: --- ### **1. 明确 OpenWebUI 的核心功能** OpenWebUI 是开源项目(如支持本地 LLM 的交互界面),其典型功能包括: - **对话界面**:用户输入、消息展示(类似聊天应用)。 - **模型交互**:调用本地或云端 AI 模型(如 LLaMA、GPT)。 - **历史管理**:保存/加载对话记录。 - **扩展功能**:插件支持、多模型切换、Markdown 渲染等。 --- ### **2. H5 实现流程** #### **步骤 1:构建前端界面(HTML/CSS)** - **基础结构**:创建聊天容器、消息展示区域、输入框、发送按钮。 ```html <div id="chat-container"> <div id="messages"> <!-- 消息动态插入 --> </div> <div class="input-area"> <input type="text" id="user-input" placeholder="输入问题..." /> <button onclick="sendMessage()">发送</button> </div> </div> ``` - **样式设计**:模仿 OpenWebUI 的视觉效果(CSS 或框架如 Tailwind)。 ```css #messages { height: 400px; overflow-y: auto; border: 1px solid #ddd; padding: 10px; } .message { margin: 5px; padding: 8px; border-radius: 10px; max-width: 80%; } .user-message { background: #e3f2fd; } .bot-message { background: #f5f5f5; } ``` #### **步骤 2:实现交互逻辑(JavaScript)** - **消息渲染**:动态插入用户和 AI 的消息。 ```javascript function addMessage(text, isUser) { const messagesDiv = document.getElementById('messages'); const message = document.createElement('div'); message.className = `message ${isUser ? 'user-message' : 'bot-message'}`; message.textContent = text; messagesDiv.appendChild(message); messagesDiv.scrollTop = messagesDiv.scrollHeight; // 滚动到底部 } ``` - **发送请求**:调用 AI 模型接口(本地或云端)。 ```javascript async function sendMessage() { const input = document.getElementById('user-input'); const userText = input.value.trim(); if (!userText) return; addMessage(userText, true); input.value = ''; // 调用后端 API(示例为本地模型接口) try { const response = await fetch('http://localhost:11434/api/generate', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ model: 'llama3', // 模型名称 prompt: userText, stream: false // 是否流式传输 }) }); const data = await response.json(); addMessage(data.response, false); } catch (error) { addMessage('请求失败,请重试。', false); } } ``` #### **步骤 3:集成模型后端** - **本地模型**:若使用本地部署的模型(如通过 Ollama),直接调用其 API。 - **云端模型**:若对接云端服务(如 OpenAI、DeepSeek),需通过后端代理(保护 API Key): ```javascript // 示例:Node.js 后端代理 const express = require('express'); const axios = require('axios'); const app = express(); app.use(express.json()); app.post('/api/chat', async (req, res) => { try { const { message } = req.body; const response = await axios.post('https://api.openai.com/v1/chat/completions', { model: 'gpt-4', messages: [{ role: 'user', content: message }] }, { headers: { Authorization: `Bearer YOUR_API_KEY` } }); res.json({ reply: response.data.choices[0].message.content }); } catch (error) { res.status(500).json({ error: '请求失败' }); } }); app.listen(3000, () => console.log('Server running on port 3000')); ``` #### **步骤 4:扩展功能** - **流式响应**:实现逐字输出(类似打字机效果)。 ```javascript // 修改 sendMessage 函数支持流式传输 async function sendMessage() { // ...(省略用户消息处理) const response = await fetch('http://localhost:11434/api/generate', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ model: 'llama3', prompt: userText, stream: true }) }); const reader = response.body.getReader(); const decoder = new TextDecoder(); let botMessage = ''; while (true) { const { done, value } = await reader.read(); if (done) break; const chunk = decoder.decode(value); const parsed = JSON.parse(chunk); botMessage += parsed.response; // 更新最后一条消息内容 messagesDiv.lastChild.textContent = botMessage; } } ``` - **历史记录**:使用 `localStorage` 或 IndexedDB 保存对话。 ```javascript // 保存历史 function saveHistory(messages) { localStorage.setItem('chatHistory', JSON.stringify(messages)); } // 加载历史 function loadHistory() { const history = localStorage.getItem('chatHistory'); return history ? JSON.parse(history) : []; } ``` --- ### **3. 注意事项** 1. **跨域问题**:直接调用外部 API 需配置 CORS,建议通过后端代理。 2. **性能优化**:流式传输减少等待时间,避免阻塞 UI。 3. **移动端适配**:使用响应式设计(如 `viewport` 设置、触摸事件处理)。 4. **安全性**: - 用户输入需过滤 XSS 攻击(如 `DOMPurify` 库)。 - 敏感接口(如 API Key)必须通过后端转发,不可暴露在前端。 --- ### **4. 技术栈参考** - **前端框架**:Vue/React 简化组件管理(如消息列表渲染)。 - **样式库**:Tailwind CSS 或 Material-UI 加速开发。 - **构建工具**:Webpack/Vite 打包优化。 - **部署**:静态资源托管(GitHub Pages、Netlify)。 --- 通过以上步骤,即可在 H5 中实现类似 OpenWebUI 的核心功能。若需复刻完整功能(如插件系统、多模型切换),需根据具体需求扩展架构设计。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨浦老苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值