概率统计学习(一) 大数定理

一、备注

       最近在学习机器学习,需要用到很多数学知识,加上要准备夏令营,于是找了一份浙大的概率论资料,将其中一些知识总结下来,供日后复习之用。

       我感觉概率统计的一个非常大的特点就是用频率估计概率,在统计的过程中还会用到很多采样的方法,比如MCMC采样,拒绝采样等,对于一些难以直接采样的问题,还会用到一些技巧,这里又设计到随机过程的知识。这里我想总结一下关于概率论里面的一些基本的定理,补充一下基础知识。

        定义:设Y_1Y_2、......、Y_n、.....为一个随机变量序列,c为一常数,若对于\forall \varepsilon >0, 均有:

       \lim_{n\to+\infty} P\{|Y_n-c|\geq \varepsilon\}=0,

        成立,则称随机变量序列\{Y_n,n\geq1\}依概率收敛于c,

        记为:Y_n \stackrel{P}\longrightarrow c,  当n\to +\infty.

二、辛钦大数定理

         形式比较简单,但是证明很麻烦。

         定义:X_1X_2.... 、​X_n、....为独立同分布的随机变量,且其期望存在,为\mu , 那么,

         \frac {1}{n}\sum_{i=1}^{n}X_i \stackrel{P} \longrightarrow \mu ,当 n\longrightarrow +\infty

        

三、马尔可夫不等式

         定理:对于x\geq 0,  具有数学期望E(x), 那么对于任意\varepsilon >0, 有

         P(X\geq \epsilon ) \leq {\frac {E(x)} \epsilon }

         证明:

          1.对于离散型变量

                  E(x) = \sum_{x} xp(x) \geq \sum_{x \geq \epsilon } xp(x) \geq \epsilon \sum_{x \geq \epsilon }p(x) = \epsilon p(x \geq \epsilon )

          2.对于连续型变量

                  E(x)=\int_{0}^{+\infty} xp(x) \mathrm{d}x \geq \int_{\epsilon}^{+\infty} xp(x) \mathrm{d}x \geq \epsilon \int_{\epsilon} ^{+\infty} p(x)\mathrm{d}x = \epsilon p(x\geq \epsilon)

       

四、切比雪夫定理(不等式)

          1.切比雪夫不等式

          定义: P(|X- \mu|\geq \epsilon)\leq \dfrac {\sigma ^2}{\epsilon ^2}  

          证明:P(|X- \mu|\geq \epsilon)=P(|X-\mu|^2 \geq \epsilon^2)

          再利用马尔可夫不等式,得P(|X-\mu|^2 \geq \epsilon^2)\leq \dfrac{E(|X-\mu|^2)}{\epsilon^2}=\dfrac {\sigma^2}{\epsilon^2}

          2.切比雪夫大数定理

          定义:X_1X_2、....、X_n、.... 为相互独立的随机变量,且具有相同的期望\mu,相同的方差\sigma^2,

          那么\frac {1}{n}\sum_{i=1}^{n}X_i \stackrel{P} \longrightarrow \mu, 当n\to+\infty.

          证明:记Y_n=\frac{1}{n}\sum_{i=1}^{n}X_i,则E(Y_n)=\frac{1}{n}\sum_{i=1}^{n}E(X_i)=\mu,D(Y_n)=\frac{1}{n^2}D(\sum_{i=1}^{n}X_i)=\frac{\sigma^2}{n}.

          对Y_n应用切比雪夫不等式,得

          0\leq P\{|Y_n-E(Y_n)|\geq \epsilon\}\leq\frac{D(Y_n)}{\epsilon^2}=\frac{\sigma^2}{n\epsilon^2} \to 0,当n\to +\infty.

五、中心极限定理(万物归一)

          1.独立同分布的中心极限定理(CLT)

           定义:设随机变量X_1X_2、...., X_n,....相互独立且同分布,E(X_i)=\mu,D(X_i)=\sigma^2,则对于充分大的n,有

             \sum_{i=1}^{n}X_i\simN(n\mu,n\sigma^2).

           2.棣莫弗-拉普拉斯中心极限定理

            定义:记n_A为n重伯努利试验中事件A发生的次数,并记事件A在每次试验中发生的概率为p(0<p<1)

            则对于充分大的n有n_A\sim N(np,np(1-p)).

            即对于二项分布B(n,p),  当n充分大时,可用正态分布来近似。

 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值