概率与数理统计——大数定律

本文介绍了概率与数理统计中的大数定律,包括切比雪夫大数定律、伯努利大数定律和辛钦大数定律。这些定律在统计推断中起到关键作用,如样本平均数接近总体平均数,事件频率可作为概率的估计。此外,还讨论了独立同分布的概念以及依概率收敛的定义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.1 大数定律
(C:\Users\chen.huaiyu\AppData\Roaming\Typora\typora-user-images\1563261264092.png)

背景:大量随机试验中,事件发生的频率稳定于某一常数,测量值的算数平均值具有稳定性。

  • 切比雪夫大数定律

前提:期望&方差要存在,且相等。

结论:

1)随着样本容量n的增加,样本平均数将接近总体平均数。为统计推断中依据样本增均数推断总体平均数提供理论依据。

2)并且,切比雪夫大数定律并未要求x1,x2,…xn同分布,只要求期望E(x)=μ,与方差D(x)=σ²的值相等即可。相较伯努利大数定律和辛钦大数定律更具一般性。

【独立同分布】 一组随机变量中每个变量的概率分布都相同,且随机变量互相独立。
【依概率收敛】设Xn–p-->a【Xn依概率收敛于a,p在线上,下同】, Yn–p-->b,又设函数g(x,y)在点(a,b)连续,则g(Xn,Yn)–p-->g(a,b); {Xn}依概率收敛于a,意味着对任意给定的ε>0,当n充分大时,事伯|Xn - X|<ε概率很大,接近1;但不是绝对的;依概率收敛比高等数学中的普通意义下的收敛弱,具有某种不确定性。
【x拔】 1/n∑Xi

  • 伯努利大数定律

前提:很好的解释二项分布。

结论:

当重复试验次数n充分大时,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值