3.1 大数定律
背景:大量随机试验中,事件发生的频率稳定于某一常数,测量值的算数平均值具有稳定性。
- 切比雪夫大数定律
前提:期望&方差要存在,且相等。
结论:
1)随着样本容量n的增加,样本平均数将接近总体平均数。为统计推断中依据样本增均数推断总体平均数提供理论依据。
2)并且,切比雪夫大数定律并未要求x1,x2,…xn同分布,只要求期望E(x)=μ,与方差D(x)=σ²的值相等即可。相较伯努利大数定律和辛钦大数定律更具一般性。
【独立同分布】 一组随机变量中每个变量的概率分布都相同,且随机变量互相独立。
【依概率收敛】设Xn–p-->a【Xn依概率收敛于a,p在线上,下同】, Yn–p-->b,又设函数g(x,y)在点(a,b)连续,则g(Xn,Yn)–p-->g(a,b); {Xn}依概率收敛于a,意味着对任意给定的ε>0,当n充分大时,事伯|Xn - X|<ε概率很大,接近1;但不是绝对的;依概率收敛比高等数学中的普通意义下的收敛弱,具有某种不确定性。
【x拔】 1/n∑Xi
- 伯努利大数定律
前提:很好的解释二项分布。
结论:
当重复试验次数n充分大时,