7-9 最长上升子序列 (10 分)

7-9 最长上升子序列 (10 分)

一个数的序列bi,当b1<b2<…<bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1,a2,…,aN),我们可以得到一些上升的子序列(ai1 ,ai2,…,aiK),这里1≤i1<i2<…<iK≤N。比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。这些子序列中最长的长度是4,比如子序列(1,3,5,8)。

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入格式:
输入的第一行是序列的长度N(1≤N≤20000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。

输出格式:
最长上升子序列的长度。

输入样例:
7
1 7 3 5 9 4 8

输出样例:
4

#include <bits/stdc++.h>
using namespace std;
int main(){
	int a[20001],f[20001];//a数组用来读取数 f数组标记他是上升序列的长度
	int n;
	cin>>n;
	int i,j;
	for (i=1;i<=n;i++){
		cin>>a[i];
	}
	f[1]=1;//因为第一个数前面没数 所以该位置的最长上升子序列一定是1
	for (i=2;i<=n;i++){
		f[i]=1;//赋初值 要是该数比前面任何一个数都小 那么该数的最长上升子序列为1
		for (j=1;j<i;j++){
			if(a[i]>a[j]&&f[i]<f[j]+1){//因为该位置的数可能比前面的好几个数都大 但我们要找出最长的那个然后+1
				f[i]=f[j]+1;
			}
		}
	}
	int max=1;
	for (i=1;i<=n;i++){//因为没有规律可言 最长的上升子序列的最后一个数不一定就是读取数中的最后一个数 所以需要我们自己去找最大的值
		if(max<f[i]){
			max=f[i];
		}
	}
	cout<<max<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

关迪迪屁事.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值