微分算子法

本文介绍了微分算子法的三种常见应用情况,包括处理含有sin(αx)的表达式、消除多项式分母以及与三角函数的结合。通过特定的公式转换和求导操作,可以求得复杂函数的特解,但需要注意求得的解可能需要进一步简化并与通解合并。
摘要由CSDN通过智能技术生成

D = d / d x (1) D = d/dx\tag{1} D=d/dx(1)
y ∗ = F ( D ) f ( x ) (2) y*=F(D)f(x)\tag{2} y=F(D)f(x)(2)
F ( D ) e a x = F ( a ) e a x (3) F(D)e^{ax} = F(a)e^{ax}\tag{3} F(D)eax=F(a)eax(3)
F ( D ) e a x g ( x ) = e a x F ( D + a ) g ( x ) (4) F(D)e^{ax}g(x) = e^{ax}F(D+a)g(x)\tag{4} F(D)eaxg(x)=eaxF(D+a)g(x)(4)
F ( D 2 ) s i n ( a x + b ) = F ( − a 2 ) s i n ( a x + b ) (5) F(D^2)sin(ax+b) = F(-a^2)sin(ax+b)\tag{5} F(D2)sin(ax+b)=F(a2

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1. 待定系数: 首先,我们假设方程的通解为 y = y_h + y_p,其中 y_h 是对应齐次方程 y'' + p(x)y' + q(x)y = 0 的通解,y_p 是非齐次方程的一个特解。 设非齐次项为 f(x),特解为 y_p = A(x)e^{\alpha x},其中 A(x) 为待定函数,\alpha 为待定常数。 将 y_p 代入方程得到: (A''(x) + 2\alpha A'(x) + \alpha^2 A(x))e^{\alpha x} + p(x)(A'(x)e^{\alpha x} + \alpha A(x)e^{\alpha x}) + q(x)A(x)e^{\alpha x} = f(x) 将 e^{\alpha x} 提出来得到: e^{\alpha x}(A''(x) + 2\alpha A'(x) + (\alpha^2 + p(x)\alpha + q(x))A(x)) = f(x) 由于等式两边的函数形式相同,因此括号中的系数必须相等,即: A''(x) + 2\alpha A'(x) + (\alpha^2 + p(x)\alpha + q(x))A(x) = 0 这是一个常系数二阶齐次线性微分方程,可以用常数变易或特征方程求解。假设其通解为 A(x) = C_1y_1(x) + C_2y_2(x),其中 y_1(x) 和 y_2(x) 是方程的两个线性无关解。 因此,方程的通解为: y = y_h + y_p = C_1y_1(x) + C_2y_2(x) + A(x)e^{\alpha x} 其中 y_h 是对应齐次方程的通解,A(x) 和 \alpha 是待定常数,需要通过待定系数确定。 2. 微分算子: 将方程左侧看作一个微分算子 L,即 L[y] = y'' + p(x)y' + q(x)y,方程可以写成 L[y] = f(x)。 设 L 的伴随算子为 L^*,则 L^*[e^{\int p(x)dx}y] = e^{\int p(x)dx}(y'' + p(x)y' + q(x)y)。 由于 L 和 L^* 互为伴随算子,因此 L^*[e^{\int p(x)dx}y] = e^{-\int p(x)dx}(e^{\int p(x)dx}y)'' 将方程左侧的微分算子改写为 L^*,得到: (e^{-\int p(x)dx}(e^{\int p(x)dx}y)'') + e^{-\int p(x)dx}q(x)e^{\int p(x)dx}y = e^{-\int p(x)dx}f(x) 令 z = e^{\int p(x)dx}y,得到: z'' + (q(x) - p'(x))z = e^{-\int p(x)dx}f(x) 这是一个常系数二阶齐次线性微分方程,可以用常数变易或特征方程求解。设其通解为 z = C_1y_1(x) + C_2y_2(x),其中 y_1(x) 和 y_2(x) 是方程的两个线性无关解。 因此,方程的通解为: y = e^{-\int p(x)dx}(C_1y_1(x) + C_2y_2(x)) + e^{-\int p(x)dx}\int f(x)e^{\int p(x)dx}dx 其中 y_1(x) 和 y_2(x) 是方程的两个线性无关解,C_1 和 C_2 是待定常数,需要根据初始条件确定。 3. 常数变易: 设方程的通解为 y = u(x)y_1(x) + v(x)y_2(x),其中 y_1(x) 和 y_2(x) 是方程的两个线性无关解,u(x) 和 v(x) 是待定函数。 将 y 带入方程得到: u''y_1 + v''y_2 + (2u'y_1' + 2v'y_2' + pu'y_1 + pv'y_2 + q(u y_1 + v y_2)) = f(x) 由于 y_1(x) 和 y_2(x) 是方程的两个线性无关解,因此有: u'y_1' + v'y_2' = 0 (1) pu'y_1 + pv'y_2 = 0 (2) 解方程组(1)和(2)得到: u = \int \frac{-v'y_2}{y_1'y_2' - y_1y_2''}dx v = \int \frac{-u'y_1}{y_1'y_2' - y_1y_2''}dx 其中,分母 y_1'y_2' - y_1y_2'' 称为 Wronskian,记为 W(y_1,y_2)。 代入 y = u(x)y_1(x) + v(x)y_2(x) 得到方程的通解。 4. Matlab: 在Matlab中,可以使用ode45函数求解常系数二阶线性非齐次微分方程。需要将方程转化为标准形式,即: y'' = -p(x)y' - q(x)y + f(x) 其中 p(x) 和 q(x) 是方程的系数,f(x) 是非齐次项。 定义一个匿名函数 dydx,其中 dydx(1) = y(2),dydx(2) = -p(x)y(2) - q(x)y(1) + f(x)。使用ode45函数求解该方程即可。 例如,对于方程 y'' + 2y' + 2y = e^{-x},可以定义如下的Matlab代码: ``` p = 2; q = 2; f = @(x) exp(-x); dydx = @(x,y) [y(2); -p*y(2) - q*y(1) + f(x)]; [x,y] = ode45(dydx,[0 10],[1 0]); % 求解区间为 [0,10],初始条件为 y(0) = 1,y'(0) = 0 plot(x,y(:,1)); % 绘制解析解 y(x) 的图像 ``` 注意,在使用Matlab求解微分方程时,需要指定求解区间和初始条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值