GFS气象数据下载

之前分享过气象学软件,其中的数据,可以从互联网上下载到,是美国开放的GFS气象数据,开放数据地址是:https://nomads.ncep.noaa.gov/
在这里插入图片描述
数据是在全球按照一定的度数划分的数据网格,有1度的、0.5度和0.25度,数据更新的时间是每6小时,时间是以格里尼治时间为标准。

例:选择GFS 0.50 Degree的数据,点击 grib filter,进入数据选择页面,提供了12天的气象预报数据下载。
在这里插入图片描述
选择某一天的数据时段,每隔6小时的数据;
在这里插入图片描述
选好时段,进入数据的下载页面:
在这里插入图片描述
在下载页面,能够看到预报的气象数据时段列表,还有气象数据的一些等级设置参数和气象数据的字母缩写(风、温度、湿度、压力等)。
预报数据时段列表:
在这里插入图片描述
气象因子英文缩写:
在这里插入图片描述
地理位置上的数据范围设置:
在这里插入图片描述
Select the levels desired:选择 2 m above ground
Select the variables desired:选择 RH
点击 下载 ,下载全球范围的地面湿度数据。
下载的数据为grib格式:
在这里插入图片描述
打开meteoinfo软件,加载下载完成的数据:
在这里插入图片描述
选择下载的数据,会显示对应下载数据的参数:
在这里插入图片描述
在右下角的图形,选择类型进行数据的渲染查看。
在这里插入图片描述
关于下载的级别和气象因子变量设置,需要参照相关的气象学专业书籍进行选择,选项可以进行多选,会将对应数据下载到一个grib数据中,在使用软件读取时,能够根据不同的参数进行读取。

更多文章请关注公众号查看!
在这里插入图片描述

### 如何抓取和下载GFS气象数据 #### 使用Python脚本自动获取GFS数据 为了实现自动化地从网络资源中提取特定结构化表格信息,可以采用编程方式来完成这一目标。对于GFS气象数据而言,通常这些数据会存储于FTP服务器或是通过HTTP接口提供访问。 考虑到提供的参考资料并未直接涉及GFS的具体操作流程[^1],这里将基于通用实践介绍一种利用`requests`库以及`pandas`处理HTML表单的方法,并假设存在类似的在线资源可被解析: ```python import requests from bs4 import BeautifulSoup import pandas as pd url = 'http://example.com/gfs_data' # 假设这是存放GFS数据页面链接 response = requests.get(url) soup = BeautifulSoup(response.content, "html.parser") tables = soup.find_all('table') df_list = [] for table in tables: df = pd.read_html(str(table))[0] df_list.append(df) data = pd.concat(df_list, ignore_index=True) print(data.head()) ``` 此段代码展示了如何读取网页中的所有表格并将其转换成Pandas DataFrame对象以便后续分析处理。然而针对实际的GFS官方站点或其他专业气象服务提供商,则可能需要遵循其API文档指导来进行更精确的数据请求与参数配置。 #### 利用专门工具或平台 除了自行编写爬虫程序外,还可以考虑使用一些专门为气象爱好者设计的应用和服务,它们往往已经集成了对多种公开可用气象数据库的支持,包括但不限于GFS模型输出。这类应用不仅简化了用户的交互过程,而且能够确保所获得的信息是最新的并且经过验证可靠的。 另外值得注意的是,在某些情况下,政府机构或者科研单位也会开放自己的数据中心供公众查询最新的观测记录及预测成果,这同样是一个不错的选择路径。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值