1、 SAT问题(SATISFIABILITY)
2、 0-1整数规划(0-1 INTEGERPROGRAMMING)
3、 最大团(CLIQUE)
判断图G中是否存在规模为K的团。
4、 (SET PACKING)
判断集合族中是否存在l个两两不交的集合。
5、 最小点覆盖(NODE COVER)
判断是否存在G中规模≤l的点集覆盖G中所有弧(E)
6、 集合覆盖 (SET COVERING)
7、 反馈节点集(FEEDBACK NOTE SET)
对有向图H和正整数k,问是否存在规模不超过k的V的子集C,s.t.对H中的任一圈,都有C中的点。
8、 反馈弧集(FEEDBACK ARC SET)
对有向图H和正整数k,问是否存在规模不超过k的E的子集C,s.t.对H中的任一圈,都有C中的弧。
9、 有向哈密尔顿回路(DIRECTED HAMILTON CIRCUIT)
判断有向图H有没有无重复遍历所有点的有向回路。
10、无向哈密尔顿回路(UNDIRECTEDHAMILTON CIRCUIT)
判断无向图G有没有无重复遍历所有点的回路。
11、3SAT
12、图着色数(CHROMATICNUMBER)
对图G,判断是否存在k染色,使相邻节点颜色相异。
13、分团覆盖(LIQUE NUMBER)
判断图G是否可分称不多于k个团。
14、恰好覆盖(EXACT COVER)
判断是否存在子集族的一个子集是全集的分割。
15、(HITTING SET)
对U的子集族S,是否存在U的子集W,使得W与S中的每个集合的交集规模均为1.
16、斯坦纳树(STEINER TREE)
对图G,V的子集R。w为G中的边的权重。求一个G的子树,包含R中所有点,且总权重不超过k。
17、(3-DIMENSIONALMATCHING)
判断T×T×T的子集U是否存在规模为|T|的子集W,其中元素在三个维度上的投影均不相同。
18、0-1背包(KNAPSACK)
19、工作规划(JOB SEQUENCING)
有p个工作,每个工作有它要做的时间、DDL、和迟到惩罚三个参数,判断是否存在顺序使得总惩罚不超过K。
20、(PARTITION)判断s个正整数组成的集合是否可以分成和相等的两部分。
21、最大割(MAX CUT)
未完待续