机器学习01感知机模型perceptron
最近决定在正式研究生开学前学习一些基础的机器学习知识。目前在看李航老师的《统计机器学习方法》,想着把理论与实践结合起来学习也许效果更好。于是在github上找到了这本书对应的python实现。写此文章用于记录我的学习过程,也加深记忆。
首先我先做了个小的实例,没有采用外部的数据集,而是自己编写了几个数据来用于快速熟悉算法。
import numpy as np
import random
import matplotlib.pyplot as plt
#create model
class perceptron:
#首先任意选取一个超平面然后用梯度下降法不断优化目标函数
def __init__(self):
self.w=[-1.0,0.8]
self.b=0.0
self.alpha=0.1
def draw(self,x1,x2,y1,y2):
plt.scatter(x1,y1,label="y=1")
plt.scatter(x2,y2,label="y=-1")
plt.legend()
plt.xlabel('X1')
plt.ylabel('X2')
label_x=np.linspace(0,4,20)
plt.plot(label_x, -(self.b+self.w[0]*label_x)/self.w[1])
#这里根据表达式来求y
plt.show()
def train(self,data,step=1000):
self.w=np.array(self.w)
for i in range(step):
randomindex=random.randint(0,len(data)-1)
#因为在极小化过程中是一次随机选一个误分类点开始梯度下降,所以在一开头引入了random包
randomData=data[randomindex]
if randomData[2]*(self.w[0]*randomData[0]+self.w[1]*randomData[1]+self