机器学习 01感知机模型

本文介绍了作者在学习李航《统计机器学习方法》时,通过实践感知机模型来加深理解的过程。首先,作者自己创建数据进行简单演练,然后使用iris数据集进一步练习,通过sklearn.datasets直接获取数据。通过这两个实例,作者对感知机模型有了更深入的认识。
摘要由CSDN通过智能技术生成

机器学习01感知机模型perceptron

最近决定在正式研究生开学前学习一些基础的机器学习知识。目前在看李航老师的《统计机器学习方法》,想着把理论与实践结合起来学习也许效果更好。于是在github上找到了这本书对应的python实现。写此文章用于记录我的学习过程,也加深记忆。
首先我先做了个小的实例,没有采用外部的数据集,而是自己编写了几个数据来用于快速熟悉算法。

import numpy as np
import random
import matplotlib.pyplot as plt

#create model
class perceptron:
    #首先任意选取一个超平面然后用梯度下降法不断优化目标函数
    def __init__(self):
        self.w=[-1.0,0.8]
        self.b=0.0
        self.alpha=0.1
    def draw(self,x1,x2,y1,y2):
        plt.scatter(x1,y1,label="y=1")
        plt.scatter(x2,y2,label="y=-1")
        plt.legend()
        plt.xlabel('X1')
        plt.ylabel('X2')
        label_x=np.linspace(0,4,20)
        plt.plot(label_x, -(self.b+self.w[0]*label_x)/self.w[1])
        #这里根据表达式来求y
        plt.show()
    def train(self,data,step=1000):
        self.w=np.array(self.w)
        for i in range(step):
            randomindex=random.randint(0,len(data)-1)
            #因为在极小化过程中是一次随机选一个误分类点开始梯度下降,所以在一开头引入了random包
            randomData=data[randomindex]
            if randomData[2]*(self.w[0]*randomData[0]+self.w[1]*randomData[1]+self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值