笔者近期看到一则新闻:生成式人工智能岗位需求暴涨超 300%,AIGC 相关岗位的平均招聘年薪达 40 万元以上。到底什么是生成式人工智能岗位,和传统的人工智能岗又有什么区别呢?笔者今天想和大家一起聊聊这个新兴岗位。
第一波先上概念,什么叫生成式人工智能岗位以及岗位职责:
生成式人工智能岗位的职责主要涉及使用生成式人工智能技术和算法来创建和生成新的内容。具体来说,这些岗位可能会承担以下职责:
- 内容生成:使用生成式人工智能(如GPT系列模型)来生成文本、图像、音频、视频等多媒体内容。这可能包括创建文章、诗歌、小说、广告文案、新闻稿件、图像设计、音频片段、视频剪辑等。
- 模型训练与优化:负责生成式人工智能模型的训练、调优和测试,以提高生成内容的质量和多样性。这可能涉及到数据收集、预处理、模型选择、超参数调整、性能评估等任务。
- 技术研究和创新:关注生成式人工智能技术的最新动态和趋势,进行技术研究和创新,以推动生成式人工智能技术的发展和应用。
- 用户交互与反馈:与用户进行交互,了解他们的需求和反馈,根据这些信息来调整和优化生成式人工智能模型,以提供更符合用户需求的内容。
- 项目管理与协作:负责生成式人工智能项目的规划、执行和管理,与团队成员进行协作,确保项目的顺利进行和高质量完成。
和传统人工智能岗位的区别是什么呢?生成式人工智能岗位和普通人工智能岗位的主要区别体现在他们的职责和专注点上。
生成式人工智能岗位专注于使用生成式人工智能技术来创建和生成新的内容。这包括利用算法和模型来生成文本、图像、音频、视频等多媒体内容。这些岗位不仅需要对生成式人工智能技术有深入的理解,还需要关注如何将这些技术应用于实际的内容生成过程中,以满足用户需求和提高内容质量。
相比之下,普通人工智能岗位则涵盖了更广泛的人工智能技术和应用。这些岗位可能涉及到人工智能的各个方面,如机器学习、深度学习、自然语言处理、计算机视觉等。他们的职责可能包括开发人工智能算法模型、数据收集和预处理、人工智能系统的开发和实施、模型性能评估和改进等。这些岗位需要关注的是如何应用人工智能技术来解决具体的问题,提高系统的性能和效率。
因此,生成式人工智能岗位和普通人工智能岗位的主要区别在于他们的职责和专注点。生成式人工智能岗位更专注于利用生成式人工智能技术来生成新的内容,而普通人工智能岗位则更广泛地关注人工智能技术的应用和发展。
要从事生成式人工智能岗位,需要具备以下具体能力要求:
- 编程与算法能力:生成式人工智能岗位通常要求具备扎实的编程基础,熟悉常用的编程语言如Python、Java等。同时,还需要对算法和数据结构有深入的理解,以便能够高效地实现和优化生成式人工智能模型。
- 机器学习和深度学习知识:生成式人工智能的核心是机器学习和深度学习技术。因此,从事该岗位需要熟悉常用的机器学习算法和深度学习框架,如TensorFlow、PyTorch等,并了解生成式模型的基本原理和常用方法。
- 数据处理和特征工程能力:生成式人工智能模型需要大量的数据来训练和优化。因此,从事该岗位需要具备良好的数据处理和特征工程能力,包括数据清洗、数据预处理、特征选择、特征变换等。
- 自然语言处理技能:对于涉及文本生成的岗位,还需要具备自然语言处理的基本知识和技能,包括分词、词性标注、命名实体识别、句法分析、情感分析等。
- 模型调优和评估能力:生成式人工智能模型的性能直接影响到生成内容的质量。因此,从事该岗位需要具备模型调优和评估的能力,包括调整模型参数、优化模型结构、评估模型性能等。
- 创新能力和问题解决能力:生成式人工智能是一个快速发展的领域,需要不断尝试新的方法和思路。因此,从事该岗位需要具备强大的创新能力和问题解决能力,能够独立思考和解决问题。
- 良好的沟通和团队合作能力:生成式人工智能岗位通常需要与团队成员、客户等各方进行沟通和合作。因此,需要具备良好的沟通和团队合作能力,能够清晰表达自己的想法和理解他人的需求。