题目:
给定一个 N×M 的矩阵 A,请你统计有多少个子矩阵 (最小 1×1,最大 N×M) 满足子矩阵中所有数的和不超过给定的整数 K?
输入格式
第一行包含三个整数 N,M 和 K。
之后 N 行每行包含 M 个整数,代表矩阵 A。
输出格式
一个整数代表答案。
数据范围
对于 30% 的数据,N,M≤20,
对于 70% 的数据,N,M≤100,
对于 100% 的数据,1≤N,M≤500;0≤Aij≤1000;1≤K≤2.5×108。
输入样例:
3 4 10
1 2 3 4
5 6 7 8
9 10 11 12
输出样例:
19
样例解释
满足条件的子矩阵一共有 19,包含:
大小为 1×1 的有 10 个。
大小为 1×2 的有 3 个。
大小为 1×3 的有 2 个。
大小为 1×4 的有 1 个。
大小为 2×1 的有 3 个。
暴力解法:(能得百分之七十的分数)
思路:和我之前写的 在数组中找子数组和小于k的子数组的个数。思路一样 ,只不过今天这道题是二维的 ,用pre[i][j]来表示第i行前j列的前缀和,将i 作为左界限,j作为右界限
矩阵的宽度用i,j两个变量用双指针遍历每一种宽度的可能性,例如i=0,j=1的时候遍历的是第一列1,5,9
矩阵的高度利用i1,i2两个变量用双指针遍历每一种高度的可能性
从第一列开始,矩阵的和必须要小于10的矩阵个数,sum=sum+pre【i2】【j】-pre【i2】【i】;
如果小于k,cnt++;
全部代码:
#include<iostream>
using namespace std;
int n, m;
int dp[1005][1005];
int a[1005][1005];
int pre[1005][1005];
int ans, sum;
int k, cnt;
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> a[i][j];
ans = max(ans, a[i][j]);
pre[i][j] = pre[i][j - 1] + a[i][j];//第i行前j列的数字和
}
}
for (int i = 0; i < m; i++) {//结束列
for (int j = i + 1; j <= m; j++) {//初始列
sum = 0;
for (int i1 = 1; i1 <= n; i1++) {
sum = 0;
for (int i2 = i1; i2 <= n; i2++) {
sum = sum + pre[i2][j] - pre[i2][i];
if (sum <= k) {
cout << "sum:" << sum;
cnt ++;
cout << "cnt:" << cnt << endl;
}
}
}
}
}
cout << cnt << endl;
return 0;
}
(2)滑动窗口优化(时间复杂度为o(n3))
全部代码:
方法一:
#include<iostream>
using namespace std;
int n, m;
int a[1005][1005];
int pre[1005][1005];
int k;
long long cnt;
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> a[i][j];
pre[i][j] = pre[i][j - 1] + a[i][j];//前缀和,第i行前j列的数字和
}
}
for (int i = 0; i <m; i++) {//初始列
for (int j = i + 1; j <= m; j++) {//结束列
int sum = 0;
for (int r =1 ,l = 1; r <= n; r++) {//r 尾指针,l表示起指针
sum += pre[r][j] - pre[r][i];
//cout << "sum:" << sum << endl;
while (r >=l&& sum > k) {
sum -= pre[l][j] - pre[l][i];
l++;
}
if (r >=l) {
cnt += r - l + 1;
//cout<<"cnt:"<<cnt<<endl;
}
}
}
}
cout << cnt << endl;
return 0;
}
方法二:
#include<iostream>
using namespace std;
typedef long long LL;
const int N = 510;
LL n, m, k;
LL a[N][N], s[N][N];
//求子矩阵的和
LL sum(int x1, int y1, int x2, int y2) {
return s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1];
}
int main()
{
cin >> n >> m >> k;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> a[i][j];
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
}
}
LL ans = 0;
for (int x1 = 1;x1 <= n; x1++) {
for (int x2 = x1; x2 <= n; x2 ++) {
for (int y1 = 1, y2 = 1; y2 <= m; y2++) {
while (y1 <= y2 &&(long long )s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]> k) y1++;
ans =ans+ y2 - y1 + 1;
}
}
}
cout << ans <<endl;
return 0;
}