有 NN 件物品和一个容量是 VV 的背包。每件物品只能使用一次。
第 ii 件物品的体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
//0-1 背包
#include<iostream>
using namespace std;
int const N = 1002;
int n, m, v[N], w[N], f[N][N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> v[i] >> w[i];
}
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (j < v[i]) {
f[i][j] = f[i - 1][j];
}
else
f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
}
}
cout << f[n][m];
return 0;
}
一维数组优化:第二个for循环是倒叙循环的原因是,正序循环会导致重复添加w[i],而倒叙添加不会
//0-1 背包
#include<iostream>
using namespace std;
int const N = 1002;
int n, m, v[N], w[N], f[N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> v[i] >> w[i];
}
for (int i = 1; i <= n; i++) {
for (int j = m; j >=0; j--) {
if (j < v[i]) {
f[j] = f[j];
}
else
f[j] = max(f[j], f[j - v[i]] + w[i]);
}
}
cout << f[m];
return 0;
}