动态规划入门--0-1背包问题以及一维数组优化

有 NN 件物品和一个容量是 VV 的背包。每件物品只能使用一次。

第 ii 件物品的体积是 vivi,价值是 wiwi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5
//0-1 背包
#include<iostream>
using namespace std;
int const N = 1002;
int n, m, v[N], w[N], f[N][N];
int  main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		cin >> v[i] >> w[i];
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 0; j <= m; j++) {
			if (j < v[i]) {
				f[i][j] = f[i - 1][j];
			}
			else
				f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
		}

	}
	cout << f[n][m];
	return 0;
}

 

 一维数组优化:第二个for循环是倒叙循环的原因是,正序循环会导致重复添加w[i],而倒叙添加不会

 

//0-1 背包
#include<iostream>
using namespace std;
int const N = 1002;
int n, m, v[N], w[N], f[N];
int  main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		cin >> v[i] >> w[i];
	}
	for (int i = 1; i <= n; i++) {
		for (int j = m; j >=0; j--) {
			if (j < v[i]) {
				f[j] = f[j];
			}
			else
				f[j] = max(f[j], f[j - v[i]] + w[i]);
		}

	}
	cout << f[m];
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值