常用傅里叶变换及其性质

性质时域 x ( t ) x(t) x(t)频域 X ( ω ) X(\omega) X(ω)
定义 x ( t ) = 1 2 π ∫ − ∞ ∞ X ( ω ) e j ω t d ω x(t)=\frac{1}{2\pi}\int^\infty_{-\infty}X(\omega)e^{j\omega t}d\omega x(t)=2π1X(ω)ejωtdω X ( ω ) = ∫ − ∞ ∞ x ( t ) e − j ω t d t   = ∣ X ( ω ) ∣ e j ϕ ( ω )   = R e ( ω ) + j I m ( ω ) X(\omega)= \int^\infty_{-\infty}x(t)e^{-j\omega t}dt\\ \quad \quad\ =\vert X(\omega)\vert e^{j\phi(\omega)}\\ \quad\quad\ =Re(\omega)+jIm(\omega) X(ω)=x(t)ejωtdt =X(ω)ejϕ(ω) =Re(ω)+jIm(ω)
线性 x 1 ( t ) ⟷ F X 1 ( ω ) x 2 ( t ) ⟷ F X 2 ( ω ) a 1 x 1 ( t ) + a 2 x 2 ( t ) x_1(t)\stackrel{\mathscr{F}}{\longleftrightarrow}X_1(\omega)\\ x_2(t)\stackrel{\mathscr{F}}{\longleftrightarrow}X_2(\omega)\\ a_1x_1(t)+a_2x_2(t) x1(t)FX1(ω)x2(t)FX2(ω)a1x1(t)+a2x2(t) a 1 X 1 ( ω ) + a 2 X 2 ( ω ) a_1X_1(\omega)+a_2X_2(\omega) a1X1(ω)+a2X2(ω)
奇偶性 x ∗ ( t ) 若 x ( t ) 为 实 函 数 , 即 x ( t ) = x ∗ ( t ) x^*(t)\\ 若x(t)为实函数, 即x(t)=x^*(t) x(t)x(t),x(t)=x(t) X ∗ ( − ω ) X ( ω ) = X ∗ ( − ω ) 或 X ∗ ( ω ) = X ( − ω ) X^*(-\omega)\\ X(\omega)=X^*(-\omega)或X^*(\omega)=X(-\omega) X(ω)X(ω)=X(ω)X(ω)=X(ω)
对偶性 X ( t ) X(t) X(t) 2 π x ( − ω ) 2\pi x(-\omega) 2πx(ω)
尺度变换 x ( a t ) a ≠ 0 x(at)\quad a\not=0 x(at)a=0 1 ∣ a ∣ X ( ω a ) \frac{1}{\vert a\vert}X(\frac{\omega}{a}) a1X(aω)
翻转 x ( − t ) x(-t) x(t) X ( − ω ) X(-\omega) X(ω)
时移 x ( t ± t 0 ) x ( a t − b ) a ≠ 0 x(t\pm t_0)\\ x(at-b)\quad a\not=0 x(t±t0)x(atb)a=0 e ± j ω t 0 X ( ω ) 1 ∣ a ∣ X ( ω a ) e − j b a ω e^{\pm j\omega t_0}X(\omega)\\ \frac{1}{\vert a\vert}X(\frac{\omega}{a})e^{-j\frac{b}{a}\omega} e±jωt0X(ω)a1X(aω)ejabω
频移 x ( t ) e ± j ω 0 t x(t)e^{\pm j\omega_0t} x(t)e±jω0t X ( ω ∓ ω 0 ) X(\omega\mp\omega_0) X(ωω0)
时域微分 d n x ( t ) d t n \frac{d^n x(t)}{dt^n} dtndnx(t) ( j ω ) n X ( ω ) (j\omega)^n X(\omega) (jω)nX(ω)
时域积分 ∫ − ∞ t x ( τ ) d τ \int^t_{-\infty}x(\tau)d\tau tx(τ)dτ 1 j ω X ( ω ) + π X ( 0 ) δ ( ω ) \frac{1}{j\omega}X(\omega)+\pi X(0)\delta(\omega) jω1X(ω)+πX(0)δ(ω)
帕斯瓦尔公式 ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t \int^\infty_{-\infty}\vert x(t)\vert^2 dt x(t)2dt 1 2 π ∫ − ∞ ∞ ∣ X ( ω ) ∣ 2 d ω \frac{1}{2\pi}\int^\infty_{-\infty}\vert X(\omega)\vert^2d\omega 2π1X(ω)2dω
时域卷积 x 1 ( t ) ∗ x 2 ( t ) x_1(t)^*x_2(t) x1(t)x2(t) X 1 ( ω ) X 2 ( ω ) X_1(\omega)X_2(\omega) X1(ω)X2(ω)
频域卷积 x 1 ( t ) x 2 ( t ) x_1(t)x_2(t) x1(t)x2(t) 1 2 π X 1 ( ω ) ∗ X 2 ( ω ) \frac{1}{2\pi}X_1(\omega)^*X_2(\omega) 2π1X1(ω)X2(ω)
频域微分 − j t x ( t ) -jtx(t) jtx(t) d X ( ω ) d ω \frac{dX(\omega)}{d\omega} dωdX(ω)
信号 x ( t ) x(t) x(t)傅里叶变换 X ( ω ) X(\omega) X(ω)
δ ( t ) \delta(t) δ(t) 1 1 1
δ ( t − t 0 ) \delta(t-t_0) δ(tt0) e − j ω t 0 e^{-j\omega t_0} ejωt0
1 1 1 2 π δ ( ω ) 2\pi\delta(\omega) 2πδ(ω)
u ( t ) u(t) u(t) π δ ( ω ) + 1 j ω \pi\delta(\omega)+\frac{1}{j\omega} πδ(ω)+jω1
s g n ( t ) sgn(t) sgn(t) 2 j ω \frac{2}{j\omega} jω2
e − a t u ( t ) a > 0 , a ∈ R e^{-at}u(t)\quad a>0,a\in R eatu(t)a>0,aR 1 j ω + a \frac{1}{j\omega+a} jω+a1
g ( t ) = { 1 ∣ t ∣ < τ 2 0 ∣ t ∣ > τ 2 g(t)=\begin{cases}1\quad &\vert t\vert<\frac{\tau}{2}\\ 0\quad&\vert t\vert>\frac{\tau}{2} \end{cases} g(t)={10t<2τt>2τ τ S a ( ω τ 2 ) \tau Sa(\frac{\omega\tau}{2}) τSa(2ωτ)
S a ( ω c t ) Sa(\omega_c t) Sa(ωct) π ω c g ( ω ) , g ( ω ) = { 1 ∣ ω ∣ < ω c 0 ∣ ω ∣ > ω c \frac{\pi}{\omega_c}g(\omega),g(\omega)=\begin{cases}1\quad &\vert \omega\vert<\omega_c\\ 0\quad&\vert \omega\vert>\omega_c \end{cases} ωcπg(ω),g(ω)={10ω<ωcω>ωc
e − a ∣ t ∣ a > 0 e^{-a\vert t\vert}\quad a>0 eata>0 2 a ω 2 + a 2 \frac{2a}{\omega^2+a^2} ω2+a22a
e − ( a t ) 2 e^{-(at)^2} e(at)2 π a e − ( ω 2 a ) 2 \frac{\sqrt{\pi}}{a}e^{-(\frac{\omega}{2a})^2} aπ e(2aω)2
e j ω 0 t e^{j\omega_0t} ejω0t 2 π δ ( ω − ω 0 ) 2\pi\delta(\omega-\omega_0) 2πδ(ωω0)
cos ⁡ ω 0 t \cos\omega_0t cosω0t π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ] \pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)] π[δ(ω+ω0)+δ(ωω0)]
sin ⁡ ω 0 t \sin\omega_0t sinω0t j π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)] jπ[δ(ω+ω0)δ(ωω0)]
t e − a t u ( t ) a > 0 , a ∈ R te^{-at}u(t)\quad a>0,a\in R teatu(t)a>0,aR 1 ( j ω + a ) 2 \frac{1}{(j\omega+a)^2} (jω+a)21
t n − 1 ( n − 1 ) ! e − a t u ( t ) a > 0 , a ∈ R \frac{t^{n-1}}{(n-1)!}e^{-at}u(t) \quad a>0,a\in R (n1)!tn1eatu(t)a>0,aR 1 ( j ω + a ) n \frac{1}{(j\omega+a)^n} (jω+a)n1
e − a t cos ⁡ ω 0 t ⋅ u ( t ) a > 0 e^{-at}\cos\omega_0t\cdot u(t)\quad a>0 eatcosω0tu(t)a>0 j ω + a ( j ω + a ) 2 + ω 0 2 \frac{j\omega+a}{(j\omega+a)^2+\omega^2_0} (jω+a)2+ω02jω+a
e − a t sin ⁡ ω 0 t ⋅ u ( t ) a > 0 e^{-at}\sin\omega_0t\cdot u(t)\quad a>0 eatsinω0tu(t)a>0 ω 0 ( j ω + a ) 2 + ω 0 2 \frac{\omega_0}{(j\omega+a)^2+\omega^2_0} (jω+a)2+ω02ω0
δ r ( t ) = ∑ n = − ∞ ∞ δ ( t − n T 0 ) \delta_r(t)=\sum\limits^\infty_{n=-\infty}\delta(t-nT_0) δr(t)=n=δ(tnT0) ω 0 ∑ n = − ∞ ∞ δ ( ω − n ω 0 ) ω = 2 π T 0 \omega_0\sum\limits^\infty_{n=-\infty}\delta(\omega-n\omega_0)\quad\omega=\frac{2\pi}{T_0} ω0n=δ(ωnω0)ω=T02π
x ( t ) = ∑ n = − ∞ ∞ X ( n ω 0 ) e j n ω 0 t x(t)=\sum\limits^\infty_{n=-\infty}X(n\omega_0)e^{jn\omega_0t} x(t)=n=X(nω0)ejnω0t 2 π ∑ n = − ∞ ∞ X ( n ω 0 ) δ ( ω − n ω 0 ) 2\pi\sum\limits^\infty_{n=-\infty}X(n\omega_0)\delta(\omega-n\omega_0) 2πn=X(nω0)δ(ωnω0)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值