多目标优化--MATLAB和Geatpy

本文介绍了多目标优化的基本概念和两种主要求解方法:间接法与直接法。在MATLAB中,通过优化工具如gamultiobj实现进化算法解决多目标问题;而Geatpy提供了一种简单易用的Python进化算法库。文章探讨了权重确定、适应度函数和帕累托前沿,并给出了MATLAB和Python的算例。
摘要由CSDN通过智能技术生成

多目标优化--MATLAB和Geatpy


最近一段时间在学习多目标优化,害怕自己忘记,就写个博客记录一下学习过程。

基础知识

多目标优化是相对于单目标优化而言的,可以理解为单目标优化的目标函数扩展版本。
(1)数学模型
standard form

对于非标准型的多目标优化,需要进行相应的目标函数和约束条件的转化,在此以最小化目标函数为标准型。
(2)求解方法
对于多目标优化问题的求解一般有两种方法:间接法和直接法。
间接法是指将多目标优化转化为相应的单目标优化求解。
直接法是不转化,直接对多个目标求解。

实操求解

(1)间接法

在多目标优化转化为单目标的过程中,主要难点在于不同目标函数的权重确定问题。对于权重的确定方法,可以参考多属性决策(MADM)问题中的权重确定方法 。可以参考合工大王禄生老师的异构网络选择多属性决策的综述[1],需要注意的是MADM中的属性需要对应为多目标优化中的目标函数,并且在权重确定方法中由主观权重和客观权重之分,客观权重确定可以使用AHP层次分析法,而主观权重可以使用TRUST方法 [2]。

实操方面
MATLAB编程方面可以参考西南交大丁宏飞的《多目标线性规划的若干解法及MATLAB实现》[3]。
间接法主要包括:理想点法、线性加权和法、最大最小法等方法。主要涉及到MATLAB中的最优化函数&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值