不确定优化中使用的决策准则方法


最近比较烦,学习有点停滞。想借助写博客,梳理自己的知识脉络,把自己静下来。关注不确定性优化问题,随机优化、鲁棒优化以及鲁棒随机优化都是不确定性优化问题,由于鲁棒随机优化中的涉及到决策变量的决策准则方法,在此学习记录一下。

1.决策准则方法

决策准则方法(decision rule approach)在随机规划/优化(stochastic programming/optimization)中具有较长的研究历史,同样可以应用到鲁棒优化领域 [1]。在两阶段(two-stage)的随机优化问题中,具有较完备的求解方法,例如Bender分解方法。但是扩展到多阶段的优化问题,不确定变量的指数式增长带来了维数灾难问题,导致优化问题不易处理(intractable)。为了解决多阶段的优化问题,需要使用近似方法,把不易处理的问题转化为易处理的问题(tractable),这里的方法一般是指决策准则方法。

含不确定参数的多阶段优化问题,根据看的资料,在我的理解一般包含两种类型的决策变量,一种是(here-and-now decision)当前决策
变量,该种决策变量在不确定性参数没有揭示自己之前就需要作出决策。第二种是(wait-and-see decision/recourse decision)观望决策变量,该种决策变量是在不确定性参数展现(或者实现)之后,根据揭示的参数作出的决策。

在这里插入图片描述

根据文献[2],如上图所示多阶段优化问题, w w w为当前决策, ε t \varepsilon_{t} εt t t t阶段观测到的随机变量, x t ( ε 1 , ⋯   , ε t ) x_{t}(\varepsilon_{1},\cdots,\varepsilon_{t}) xt(ε1,,εt) t t t阶段的观望决策变量,由 t t t个观测值 ( ε 1 , ⋯   , ε t ) (\varepsilon_{1},\cdots,\varepsilon_{t}) (ε1,,εt)决定。需要注意的是这里包含不确定参数的多阶段优化问题,一般形式为线性规划问题或者分段线性规划问题。

同样对于两阶段的鲁棒优化(two-stage robust optimization)可以使用改造的Bender分解方法进行求解 [3]。但是扩展到多阶段的鲁棒优化问题,需要利用决策准则进行近似求解。根据参考文献[1],目前所使用的决策准则方法主要有仿射、分段仿射和三角多项式函数等方法。

2.线性决策准则

仿射函数也即是线性函数,此时的决策准则也称为线性决策准则(Linear Decision Rule,LDR),是较为常用的准则之一。此时:
x ( ε 1 , ⋯   , ε t ) = M 0 + ∑ t = 1 T M t ε t x(\varepsilon_{1},\cdots,\varepsilon_{t})=M_{0}+\sum_{t=1}^{T}{M_{t}\varepsilon_{t}} x(ε1,,εt)=M0+t=1TMtεt
其中, M 0 M_{0} M0为截距, M t M_{t} Mt为系数。

对于线性规划,假设原问题为 P : min ⁡ x { c T x : A x ≥ b , x ≥ 0 } \mathcal{P}:\min_{x}\{c^{T}x:Ax\geq b,x\geq 0\} P:minx{cTx:Axb,x0},其对偶问题为 D : max ⁡ y { b T y : A T y ≤ c , y ≥ 0 } \mathcal{D}:\max_{y}\{b^{T}y:A^{T}y\leq c,y\geq 0\} D:maxy{bTy:ATyc,y0},原问题和对偶问题具有相同的参数 ( A , b , c ) (A,b,c) (A,b,c)。根据对偶理论,原问题可行解的目标函数值不小于对偶问题可行解的目标函数值(弱对偶, c T x ≥ b T y {c^{T}x} \geq {b^{T}y} cTxbTy)。若原问题有最优解,则对偶问题一定有最优解,且二者的最优值相等(强对偶, min ⁡ c T x = max ⁡ b T y {\min c^{T}x} = \max{b^{T}y} mincTx=maxbTy)。

假设具有不确定参数的多阶段优化问题形式为:
min ⁡ E ε [ ∑ t = 1 T c ( ε t ) T x t ( ε t ) ] s . t .    ∑ s = 1 t A t s x s ( ε s ) ≥ b ( ε t ) x t ( ε t ) ≥ 0 , ∀ ε ∈ Ξ , t = 1 , ⋯   , T \begin{aligned} &\min \Bbb{E_{\varepsilon}}\begin{bmatrix} \sum_{t=1}^{T}c(\varepsilon^{t})^{T}x_{t}(\varepsilon^{t}) \end{bmatrix} \\ &{s.t.} \; \sum_{s=1}^{t} A_{ts}x_{s}(\varepsilon^{s}) \geq b(\varepsilon^{t}) \\ &\qquad x_{t}(\varepsilon^{t})\geq 0,\forall \varepsilon \in \Xi,t=1,\cdots,T \end{aligned} minEε[t=1Tc(εt)Txt(εt)]s.t.s=1tAtsxs(εs)b(εt)xt(εt)0,εΞ,t=1,,T
其中, c ( ε t ) T c(\varepsilon^{t})^{T} c(εt)T c ( ε t ) c(\varepsilon^{t}) c(εt)向量的转置, ε t = ( ε 1 , ⋯   , ε t ) \varepsilon^{t}=(\varepsilon_{1},\cdots,\varepsilon_{t}) εt=(ε1,,εt)

假设上述原问题为 P \mathcal{P} P,使用线性决策准则近似后得到的问题是 P ~ \tilde{\mathcal{P}} P~,近似后得到的结果是次优解,也即是有 min ⁡ P ≤ min ⁡ P ~ \min \mathcal{P}\leq \min \tilde{\mathcal{P}} minPminP~。通过对偶转化,原问题的对偶问题为 D \mathcal{D} D,同样对其使用线性决策准则进行近似求解,此时近似的问题是 D ~ \tilde{\mathcal{D}} D~,可以得到 max ⁡ D ≥ max ⁡ D ~ \max \mathcal{D}\geq \max \tilde{\mathcal{D}} maxDmaxD~

2.1 多阶段优化能否使用LDR?

根据文献[1],由于原问题和其对偶问题不易处理,需要使用决策准则方法进行近似,将其转化为易处理的问题。对原问题和对偶问题都使用线性决策准则,并评估两者最优目标值之间差值,即 Δ = min ⁡ P ~ − max ⁡ D ~ \Delta=\min{\tilde{\mathcal{P}}}-\max{\tilde{\mathcal{D}}} Δ=minP~maxD~

根据文献[1],假设 Δ u = min ⁡ P ~ − min ⁡ P \Delta^{u}=\min \tilde{\mathcal{P}}-\min{\mathcal{P}} Δu=minP~minP Δ l = max ⁡ D − max ⁡ D ~ \Delta^{l}=\max{\mathcal{D}}-\max{\tilde{\mathcal{D}}} Δl=maxDmaxD~,其中 Δ u ≥ 0 \Delta^{u}\geq 0 Δu0表示原问题和其线性决策近似之间的差值, Δ l ≥ 0 \Delta^{l}\geq 0 Δl0表示对偶问题和其线性决策准则之间的差值。则,对于 Δ \Delta Δ 有以下不等式成立:

Δ = min ⁡ P ~ − max ⁡ D ~    = min ⁡ P ~ − min ⁡ P + min ⁡ P − max ⁡ D + max ⁡ D − max ⁡ D ~    = Δ u + min ⁡ P − max ⁡ D + Δ l    ≥ Δ u + Δ l \begin{aligned} &\Delta=\min{\tilde{\mathcal{P}}}-\max{\tilde{\mathcal{D}}}\\ &\;=\min{\tilde{\mathcal{P}}}-\min{\mathcal{P}}+\min{\mathcal{P}}-\max{\mathcal{D}}+\max{\mathcal{D}}-\max{\tilde{\mathcal{D}}}\\ &\;=\Delta^{u}+\min{\mathcal{P}}-\max{\mathcal{D}}+\Delta^{l}\\ &\;\geq \Delta^{u}+\Delta^{l} \end{aligned} Δ=minP~maxD~=minP~minP+minPmaxD+maxDmaxD~=Δu+minPmaxD+ΔlΔu+Δl

此时, min ⁡ P ~ \min{\tilde{\mathcal{P}}} minP~为原问题 P \mathcal{P} P的上界,而 max ⁡ D ~ \max{\tilde{\mathcal{D}}} maxD~为原问题 P \mathcal{P} P的下界。

如果 Δ \Delta Δ较小,说明使用线性决策准则是可行的,是可接受的。相反如果差值 Δ \Delta Δ较大,说明随机变量 ε \varepsilon ε与决策变量 x x x不具有线性关系,也就无法使用线性决策准则进行近似转化,此时需要使用别的决策准则方法。

参考文献
[1] Georghiou, A., Kuhn, D. & Wiesemann, W. The decision rule approach to optimization under uncertainty: methodology and applications. Comput Manag Sci 16, 545–576 (2019). https://doi.org/10.1007/s10287-018-0338-5
[2] Chen, Zhi & Sim, Melvyn & Xiong, Peng. (2020). Robust Stochastic Optimization Made Easy with RSOME. Management Science. DOI: 10.1287/mnsc.2020.3603…
[3] Ayoub, J., and Poss, M. Decomposition for adjustable robust linear optimization subject to uncertainty polytope. Computational Management Science 13, 2 (2016), 219–239.

  • 6
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值