134. Gas Station

There are N gas stations along a circular route, where the amount of gas at station i is gas[i].

You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.

Return the starting gas station's index if you can travel around the circuit once, otherwise return -1.

Note:

The solution is guaranteed to be unique.


https://discuss.leetcode.com/topic/1344/share-some-of-my-ideas


I have thought for a long time and got two ideas:

  • If car starts at A and can not reach B. Any station between A and B
    can not reach B.(B is the first station that A can not reach.)
  • If the total number of gas is bigger than the total number of cost. There must be a solution.
  • (Should I prove them?)


public int canCompleteCircuit(int[] gas, int[] cost) {
    int sumGas = 0;
    int sumCost = 0;
    int start = 0;
    int tank = 0;
    for (int i = 0; i < gas.length; i++) {
        sumGas += gas[i];
        sumCost += cost[i];
        tank += gas[i] - cost[i];
        if (tank < 0) {
            start = i + 1;
            tank = 0;
        }
    }
    if (sumGas < sumCost) {
        return -1;
    } else {
        return start;
    }
}

The reason why I think this works:
1, if sum of gas is more than sum of cost, then there must be a solution. And the question guaranteed that the solution is unique(The first one I found is the right one).
2, The tank should never be negative, so restart whenever there is a negative number.



Proof to the first point: say there is a point C between A and B -- that is A can reach C but cannot reach B. Since A cannot reach B, the gas collected between A and B is short of the cost. Starting from A, at the time when the car reaches C, it brings in gas >= 0, and the car still cannot reach B. Thus if the car just starts from C, it definitely cannot reach B.

Proof for the second point:

  • If there is only one gas station, it’s true.
  • If there are two gas stations a and b, and gas(a) cannot afford cost(a), i.e., gas(a) < cost(a), then gas(b) must be greater than cost(b), i.e., gas(b) > cost(b), since gas(a) + gas(b) > cost(a) + cost(b); so there must be a way too.
  • If there are three gas stations a, b, and c, where gas(a) < cost(a), i.e., we cannot travel from a to b directly, then:
  • either if gas(b) < cost(b), i.e., we cannot travel from b to c directly, then cost(c) > cost(c), so we can start at c and travel to a; since gas(b) < cost(b), gas(c) + gas(a) must be greater than cost(c) + cost(a), so we can continue traveling from a to b. Key Point: this can be considered as there is one station at c’ with gas(c’) = gas(c) + gas(a) and the cost from c’ to b is cost(c’) = cost(c) + cost(a), and the problem reduces to a problem with two stations. This in turn becomes the problem with two stations above.
  • or if gas(b) >= cost(b), we can travel from b to c directly. Similar to the case above, this problem can reduce to a problem with two stations b’ and a, where gas(b’) = gas(b) + gas(c) and cost(b’) = cost(b) + cost(c). Since gas(a) < cost(a), gas(b’) must be greater than cost(b’), so it’s solved too.
  • For problems with more stations, we can reduce them in a similar way. In fact, as seen above for the example of three stations, the problem of two stations can also reduce to the initial problem with one station.

用c++解决pipeline system consists of N transfer station, some of which are connected by pipelines. For each of M pipelines the numbers of stations A[i] and B[i], which are connected by this pipeline, and its profitability C[i] are known. A profitability of a pipeline is an amount of dollars, which will be daily yielded in taxes by transferring the gas through this pipeline. Each two stations are connected by not more than one pipeline. The system was built by Soviet engineers, who knew exactly, that the gas was transferred from Ukrainian gas fields to Siberia and not the reverse. That is why the pipelines are unidirectional, i.e. each pipeline allows gas transfer from the station number A[i] to the station number B[i] only. More over, if it is possible to transfer the gas from the station X to the station Y (perhaps, through some intermediate stations), then the reverse transfer from Y to X is impossible. It is known that the gas arrives to the starting station number S and should be dispatched to the buyers on the final station number F. The President ordered the Government to find a route (i.e. a linear sequence of stations which are connected by pipelines) to transfer the gas from the starting to the final station. A profitability of this route should be maximal. A profitability of a route is a total profitability of its pipelines. Unfortunately, the President did not consider that some pipelines ceased to exist long ago, and, as a result, the gas transfer between the starting and the final stations may appear to be impossible... Input The first line contains the integer numbers N (2 ≤ N ≤ 500) and M (0 ≤ M ≤ 124750). Each of the next M lines contains the integer numbers A[i], B[i] (1 ≤ A[i], B[i] ≤ N) and C[i] (1 ≤ C[i] ≤ 10000) for the corresponding pipeline. The last line contains the integer numbers S and F (1 ≤ S, F ≤ N; S ≠ F). Output If the desired route exists, you should output its profitability. Otherwise you should output "No solution".
05-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值