为了测试图片重建的效果,我们把数据集切分为训练集和测试集,其中测试集不参加训练。从测试集中随机采样测试图片,通过自编码器计算得到重建后的图片,然后将真实图片与重建图片保存为图片阵列,并可视化。
1.导包
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from PIL import Image
from matplotlib import pyplot as plt
2.代码
#保证,每次代码产生的随机数是相同的,要不然每次运行出的数据都是不同的,不利于我们的研究分析
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')
def save_images(imgs, name):
new_im = Image.new('L', (280, 280))
index = 0
for i in range(0, 280, 28):
for j in range(0, 280, 28):
im = imgs[index]
im = Image.fromarray(im, mode='L')
new_im.paste(im, (i, j))
index += 1
new_im.save(name)
h_dim = 20
batchsz = 512
lr = 1e-3
#数据集采用fashion_mnist
(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
#切分数据集
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
class AE(keras.Model):
def __init__(self):
super(AE, self).__init__()
# Encoders
self.encoder = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(h_dim)
])
# Decoders
self.decoder = Sequential([
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(784)
])
def call(self, inputs, training=None):
# [b, 784] => [b, 10]
h = self.encoder(inputs)
# [b, 10] => [b, 784]
x_hat = self.decoder(h)
return x_hat
model = AE()
model.build(input_shape=(None, 784))
model.summary()
optimizer = tf.optimizers.Adam(lr=lr)
for epoch in range(100):
for step, x in enumerate(train_db):
#[b, 28, 28] => [b, 784]
x = tf.reshape(x, [-1, 784])
with tf.GradientTape() as tape:
x_rec_logits = model(x)
rec_loss = tf.losses.binary_crossentropy(x, x_rec_logits, from_logits=True)
rec_loss = tf.reduce_mean(rec_loss)
grads = tape.gradient(rec_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 100 ==0:
print(epoch, step, float(rec_loss))
# evaluation
x = next(iter(test_db))
logits = model(tf.reshape(x, [-1, 784]))
x_hat = tf.sigmoid(logits)
# [b, 784] => [b, 28, 28]
x_hat = tf.reshape(x_hat, [-1, 28, 28])
# [b, 28, 28] => [2b, 28, 28]
x_concat = tf.concat([x, x_hat], axis=0)
x_concat = x_hat
x_concat = x_concat.numpy() * 255.
x_concat = x_concat.astype(np.uint8)
save_images(x_concat, 'ae_images/rec_epoch_%d.png'%epoch)
运行结果:
(60000, 28, 28) (60000,)
(10000, 28, 28) (10000,)
部分数据结果:
0 0 0.6926942467689514
0 100 0.32146936655044556
10 0 0.28796055912971497
10 100 0.2799046039581299
20 0 0.2787684202194214
由于时间问题只运行了20个epoch。下面给出原始、第10、20效果对比。
0 epoch
10 epoch重建效果
20 epoch重建效果
note:tensorflow版本使用2.2.0。