图片重建(tensorflow+fashion_mnist数据集)

本文介绍了一种使用自编码器进行图片重建的方法。通过将Fashion MNIST数据集切分为训练集和测试集,利用自编码器对测试集图片进行重建,并通过可视化比较重建前后图片效果。实验结果显示,随着训练轮次增加,图片重建效果逐步提升。
摘要由CSDN通过智能技术生成

为了测试图片重建的效果,我们把数据集切分为训练集和测试集,其中测试集不参加训练。从测试集中随机采样测试图片,通过自编码器计算得到重建后的图片,然后将真实图片与重建图片保存为图片阵列,并可视化。

1.导包

import  os
import  tensorflow as tf
import  numpy as np
from    tensorflow import keras
from    tensorflow.keras import Sequential, layers
from    PIL import Image
from    matplotlib import pyplot as plt

2.代码

#保证,每次代码产生的随机数是相同的,要不然每次运行出的数据都是不同的,不利于我们的研究分析
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')


def save_images(imgs, name):
    new_im = Image.new('L', (280, 280))

    index = 0
    for i in range(0, 280, 28):
        for j in range(0, 280, 28):
            im = imgs[index]
            im = Image.fromarray(im, mode='L')
            new_im.paste(im, (i, j))
            index += 1

    new_im.save(name)


h_dim = 20
batchsz = 512
lr = 1e-3

#数据集采用fashion_mnist
(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
#切分数据集
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)

print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)



class AE(keras.Model):

    def __init__(self):
        super(AE, self).__init__()

        # Encoders
        self.encoder = Sequential([
            layers.Dense(256, activation=tf.nn.relu),
            layers.Dense(128, activation=tf.nn.relu),
            layers.Dense(h_dim)
        ])

        # Decoders
        self.decoder = Sequential([
            layers.Dense(128, activation=tf.nn.relu),
            layers.Dense(256, activation=tf.nn.relu),
            layers.Dense(784)
        ])


    def call(self, inputs, training=None):
        # [b, 784] => [b, 10]
        h = self.encoder(inputs)
        # [b, 10] => [b, 784]
        x_hat = self.decoder(h)

        return x_hat



model = AE()
model.build(input_shape=(None, 784))
model.summary()

optimizer = tf.optimizers.Adam(lr=lr)

for epoch in range(100):

    for step, x in enumerate(train_db):

        #[b, 28, 28] => [b, 784]
        x = tf.reshape(x, [-1, 784])

        with tf.GradientTape() as tape:
            x_rec_logits = model(x)

            rec_loss = tf.losses.binary_crossentropy(x, x_rec_logits, from_logits=True)
            rec_loss = tf.reduce_mean(rec_loss)

        grads = tape.gradient(rec_loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))


        if step % 100 ==0:
            print(epoch, step, float(rec_loss))


        # evaluation
        x = next(iter(test_db))
        logits = model(tf.reshape(x, [-1, 784]))
        x_hat = tf.sigmoid(logits)
        # [b, 784] => [b, 28, 28]
        x_hat = tf.reshape(x_hat, [-1, 28, 28])

        # [b, 28, 28] => [2b, 28, 28]
        x_concat = tf.concat([x, x_hat], axis=0)
        x_concat = x_hat
        x_concat = x_concat.numpy() * 255.
        x_concat = x_concat.astype(np.uint8)
        save_images(x_concat, 'ae_images/rec_epoch_%d.png'%epoch)

运行结果:
(60000, 28, 28) (60000,)
(10000, 28, 28) (10000,)
在这里插入图片描述
部分数据结果:
0 0 0.6926942467689514
0 100 0.32146936655044556

10 0 0.28796055912971497
10 100 0.2799046039581299

20 0 0.2787684202194214

由于时间问题只运行了20个epoch。下面给出原始、第10、20效果对比。
在这里插入图片描述
0 epoch

在这里插入图片描述
10 epoch重建效果
在这里插入图片描述
20 epoch重建效果
note:tensorflow版本使用2.2.0。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值