多项式最小二乘法拟合原理详解

前提条件

  • 涉及到高等数学及线性代数相关知识
  • 最小二乘说明: min ⁡ φ ∑ i = 1 n δ i 2 = ∑ i = 1 n ( φ ( x i ) − y i ) 2 \min _{\varphi} \sum_{i=1}^{n} \delta_{i}^{2}=\sum_{i=1}^{n}\left(\varphi\left(x_{i}\right)-y_{i}\right)^{2} φmini=1nδi2=i=1n(φ(xi)yi)2
    即函数模型纵坐标与散点值纵坐标的差值平方之和最小时,认为拟合度最好。
  • 假设多项式模型为: y = a 0 + a 1 x + … + a k x k y=a_{0}+a_{1} x+\ldots+a_{k} x^{k} y=a0+a1x++akxk

理论推导

  1. 根据最小二乘式子及模型假设,可以得到: R 2 ≡ ∑ i = 1 n [ y i − ( a 0 + a 1 x i + … + a k x i k ) ] 2 R^{2} \equiv \sum_{i=1}^{n}\left[y_{i}-\left(a_{0}+a_{1} x_{i}+\ldots+a_{k} x_{i}^{k}\right)\right]^{2} R2i=1n[yi(a0+a1xi++akxik)]2
  2. 要想使结果最小,则参数 a 0 , a 1 , … , a k a_{0},a_{1},\ldots,a_{k} a0,a1,,ak应满足各项偏导数 ∂ R 2 ∂ a k = 0 \frac{\partial R^2}{\partial a_{k}} = 0 akR2=0,因此得到n个方程: − 2 ∑ i = 1 n [ y − ( a 0 + a 1 x + … + a k x k ) ] = 0 -2 \sum_{i=1}^{n}\left[y-\left(a_{0}+a_{1} x+\ldots+a_{k} x^{k}\right)\right] =0 2i=1n[y(a0+a1x++akxk)]=0 − 2 ∑ i = 1 n [ y − ( a 0 + a 1 x + … + a k x k ) ] x = 0 -2 \sum_{i=1}^{n}\left[y-\left(a_{0}+a_{1} x+\ldots+a_{k} x^{k}\right)\right] x=0 2i=1n[y(a0+a1x++akxk)]x=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值