前提条件
- 涉及到高等数学及线性代数相关知识
- 最小二乘说明: min φ ∑ i = 1 n δ i 2 = ∑ i = 1 n ( φ ( x i ) − y i ) 2 \min _{\varphi} \sum_{i=1}^{n} \delta_{i}^{2}=\sum_{i=1}^{n}\left(\varphi\left(x_{i}\right)-y_{i}\right)^{2} φmini=1∑nδi2=i=1∑n(φ(xi)−yi)2
即函数模型纵坐标与散点值纵坐标的差值平方之和最小时,认为拟合度最好。 - 假设多项式模型为: y = a 0 + a 1 x + … + a k x k y=a_{0}+a_{1} x+\ldots+a_{k} x^{k} y=a0+a1x+…+akxk
理论推导
- 根据最小二乘式子及模型假设,可以得到: R 2 ≡ ∑ i = 1 n [ y i − ( a 0 + a 1 x i + … + a k x i k ) ] 2 R^{2} \equiv \sum_{i=1}^{n}\left[y_{i}-\left(a_{0}+a_{1} x_{i}+\ldots+a_{k} x_{i}^{k}\right)\right]^{2} R2≡i=1∑n[yi−(a0+a1xi+…+akxik)]2
- 要想使结果最小,则参数 a 0 , a 1 , … , a k a_{0},a_{1},\ldots,a_{k} a0,a1,…,ak应满足各项偏导数 ∂ R 2 ∂ a k = 0 \frac{\partial R^2}{\partial a_{k}} = 0 ∂ak∂R2=0,因此得到n个方程: − 2 ∑ i = 1 n [ y − ( a 0 + a 1 x + … + a k x k ) ] = 0 -2 \sum_{i=1}^{n}\left[y-\left(a_{0}+a_{1} x+\ldots+a_{k} x^{k}\right)\right] =0 −2i=1∑n[y−(a0+a1x+…+akxk)]=0 − 2 ∑ i = 1 n [ y − ( a 0 + a 1 x + … + a k x k ) ] x = 0 -2 \sum_{i=1}^{n}\left[y-\left(a_{0}+a_{1} x+\ldots+a_{k} x^{k}\right)\right] x=0 −2i=1∑n[y−(a0+a1x+…+akxk)]x=0