NVIDIA 的 Blackwell 架构:解析 B100、B200 和 GB200

随着人工智能和机器学习领域继续以惊人的速度发展,NVIDIA 的最新创新——Blackwell 架构,将以无与伦比的并行计算能力重新定义AI和HPC。

NVIDIA 展示了一系列新技术,有望以前所未有的方式加速 AI 训练和推理。他们推出了 Blackwell GPU、GB200 Super Chip 和GB200 NVL72。每一个都代表着突破性的创新。

在本文中,我们将深入分析 NVIDIA 的 Blackwell 架构。它对于高性能计算意味着什么?它如何改进 Hopper 架构?然后,我们将逐一介绍每款新产品。

Blackwell vs Hopper

**Blackwell 架构以大卫·布莱克威尔命名,**受人尊敬的数学家和统计学家。布莱克威尔在博弈论和统计学方面的开创性工作和贡献在该领域留下了不可磨灭的印记,使他的名字成为数学科学创新和卓越的代名词。这一致敬反映了新平台的开创性和先进的计算能力。

NVIDIA 的 Blackwell 架构将拥有迄今为止最大的芯片,拥有 1040 亿个晶体管。Blackwell GPU(B100 和 B200)采用双芯片组设计,与 Hopper 相比有了重大飞跃。例如,B100 的晶体管数量比 H100 多 1280 亿个,AI 性能是 H100 的五倍。

NVIDIA 的 Blackwell GPU 包含 2080 亿个晶体管,采用定制的 TSMC 4NP 工艺制造。所有 Blackwell 产品都采用两个光罩限制芯片,通过每秒 10 兆兆字节 (TB/s) 连接芯片间互连在统一的单个 GPU 中。

Blackwell 架构通过以下方式提供更佳的性能:

  • FP8性能: Blackwell架构在FP8精度下提供20 PetaFLOPS(PFLOPS)的性能,是Hopper架构性能的2.5倍。

  • **FP6 性能:**与 FP8 一样,Blackwell 架构上的 FP6 性能也是 20 PFLOPS,比 Hopper 架构提高了 2.5 倍。

  • **FP4 性能:**这是一个重大飞跃,Blackwell 在新的 FP4 指标中提供了 40 PFLOPS,是 Hopper 性能的五倍。这表明它非常重视提高低精度计算的性能,这对于 AI 推理至关重要。

  • HBM 模型大小: NVIDIA 的 Blackwell 架构支持高达 7400 亿个参数的模型,这是 Hopper 架构所能管理的模型的六倍。这一大幅提升支持开发和运行更大、更复杂的 AI 模型。

  • HBM 带宽: Blackwell 上的高带宽内存 (HBM) 带宽为每参数秒 34 兆兆字节 (TB/s),是 Hopper 上可用带宽的五倍。这允许更快的数据传输速率,从而显著提高计算性能。

  • 采用 SHARP 技术的 NVLink All-Reduce: Blackwell 架构采用 SHARP 技术,提供 7.2 TB/s 的 NVLink all-reduce 功能,是 Hopper 架构功能的四倍。SHARP(可扩展分层聚合和缩减协议)增强了集体通信操作,这对于分布式 AI 和机器学习任务至关重要。

借助 Blackwell 架构,NVIDIA 推出了第五代 NVLink,提供前所未有的并行性和带宽水平,远远超过 Hopper 架构的功能。这些进步凸显了 Blackwell 为下一代人工智能和高性能计算应用提供支持的潜力。

Blackwell 架构还配备了 Secure AI。Secure AI 即使在使用时也能保护您的 AI 数据。它提高了安全性,同时又不降低速度。这使得公司可以安全地开展最复杂的 AI 项目,保护他们的想法,

### Blackwell 架构概述 Blackwell 架构是英伟达最新一代 GPU 架构,旨在纪念首位入选美国国家科学院的黑人学者、数学家博弈论学家 David Harold Blackwell。该架构继承了 Hopper GPU 架构的优点,并进一步提升了性能功能[^1]。 ### 技术细节 #### 制造工艺与晶体管数量 Blackwell 架构采用了专门定制的双倍光刻极限尺寸 4NP TSMC 工艺制造,拥有高达 2080 亿个晶体管。这种先进的制程技术不仅提高了晶体管密度,还显著降低了功耗,使得每瓦特性能得到了极大提升[^2]。 #### 片间互联技术 为了增强数据传输速度并减少延迟,Blackwell 架构引入了 10TB/s 的片间互联带宽,能够高效地将多个 GPU 裸片连接成单一逻辑单元。这一特性对于大规模分布式计算任务尤为重要,可以大幅提高系统的整体吞吐量响应时间。 ```python # 示例代码展示如何配置多GPU间的通信参数 import nvidia.smi as nvsmi def configure_interconnect(bandwidth=10e12): # 设置默认带宽为10 TB/s try: handle = nvsmi.nvmlDeviceGetHandleByIndex(0) nvsmi.setInterConnectBandwidth(handle, bandwidth) print(f"成功设置片间互联带宽至 {bandwidth / (10**12)} TB/s") except Exception as e: print(e) configure_interconnect() ``` #### Superchip 设计 基于 Blackwell 架构NVIDIA 推出了 GB200 Grace Blackwell 超级芯片。这款超级芯片通过 900GB/s 的超低功耗片间互联,集成了两个 B200 Tensor Core GPU 一个 NVIDIA Grace CPU。这使得 GB200 成为处理复杂 AI 计算的理想选择之一。 #### 扩展系统 针对高度计算密集型工作负载的需求,NVIDIA 开发了 GB200 NVL72——一个多节点液冷机架级扩展系统。此系统由 36 个 Grace Blackwell 超级芯片组成,总共包含 72 个 Blackwell GPU 36 个 Grace CPU,全部通过第五代 NVLink 进行高速互连。 ### 发布计划与发展路线图 按照官方规划,配备 Blackwell 架构的产品预计于今年晚些时候正式发售。与此同时,英伟达公布了未来三年的技术演进路径:将在 2025 年推出 Blackwell Ultra,在 2026 年发布 Rubin 架构,并在 2027 年带来 Rubin Ultra 架构升级版[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值