1、我们可以将一个 n × m 的矩阵建模为向量的向量:Matrix : Set -> Nat -> Nat -> Set; Matrix A n m = Vec (Vec A n) m。本题的目标是定义这种矩阵的转置。(a) 定义一个函数,用于计算包含 n 个元素 x 的向量。vec : {n : Nat}{A : Set} -> A -> Vec A n; vec {n} x = {! !}
可使用递归方式定义该函数。当 n 为 0 时,返回空向量;当 n 为后继数时,将元素 x 与 n 减 1 时调用 vec 函数得到的向量进行拼接。以下是 Agda 代码实现:
open import Data.Nat
open import Data.Vec
vec : {n : ℕ} {A : Set} -> A -> Vec A n
vec {zero} x = []
vec {suc n} x = x ∷ vec {n} x
2、定义一个函数,将一个函数向量逐点应用到一个参数向量上。中缀左结合运算符优先级为 90 的 $ ; $ 函数类型为:对于给定的自然数 n 以及集合 A 和 B,该函数接受一个长度为 n 的从 A 到 B 的函数向量和一个长度为 n 的 A 类型向量,返回一个长度为 n 的 B 类型向量。函数体待填充。
要实现这个函数,可通过递归方式处理向量元素。当向量为空时,结果也为空;当向量非空时,将第一个函数应用到第一个参数上,并递归处理剩余部分。以下是实现代码:
infixl 90 _$_
_$_ : {n : Nat}{A B : Set} -> Vec (A -> B) n -> Vec A n -> Vec B n
_$_ [] [] = [

最低0.47元/天 解锁文章
301

被折叠的 条评论
为什么被折叠?



