神经网络优化之正则化

正则化

        为了避免过拟合问题,一个常用的方法是正则化(regularization)。正则化的思想就是在损失函数中加入刻画模型复杂的指标。假设用于刻画模型在训练数据上表现的损失函数为J(θ),那么在优化时不是直接优化J(θ),而是优化J(θ)+λR(w),其中R(w)刻画的是模型的复杂度,而λ表示模型复杂损失在总损失中的比例。这里这里θ表示的是一个神经网络中所有的参数,包括变身的权重w和偏置项b。常用的刻画模型复杂度的函数R(w)有两种,一种是L1正则化
在这里插入图片描述
另一种是L2正则化
在这里插入图片描述
        二者的基本思想都是希望通过限制权重的大小,使得模型不能任意拟合训练数据中的随机噪声。但是这两种正则化的方法也有很大的区别。首先,L1正则化会让参数变得更稀疏,而L2正则化不会。之所以L2正则化不会让参数变得稀疏的原因是当参数很小时,比如0.001,这个参数的平方基本上就可以忽略了,于是模型不会进一步将这个参数调整为0。其次,L1正则化的计算公式不可导,而L2正则化公式可导。因为在优化时需要计算损失函数的偏导数,所以对含有L2正则化损失函数的优化要更加简洁。优化带L1正则化的损失函数要更加复杂,而且优化方法也有很多种。在实践中,也可以将L1正则化和L2正则化同时使用:
在这里插入图片描述
一个简单的带L2正则化的损失函数

loss = tf.reduce_mean(tf.square(y_-y))+
    tf.contrib.layers.l2_regularizer(lambda)(w))

        w为需要计算正则化损失的参数。当神经网络的参数增多之后,这样的方式首先可能导致损失函数loss的定义很长,可读性差且容易出错。但更主要的是,当网络结构复杂之后定义网络结构的部分和计算损失函数的部分可能不在同一函数里,这样通过变量这种方式计算损失函数就不方便了。为了解决这个问题,可以使用Tensorflow中提供的集合(collection)。

示例演示

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

data = []
label = []
np.random.seed(0)
#以原点为圆心,半径为1的圆把散点分成红蓝两部分,并加入如随机噪声
for i in range(150):
    x1 = np.random.uniform(-1, 1)
    x2 = np.random.uniform(0, 2)
    data.append([np.random.normal(x1, 0.1), np.random.normal(x2, 0.1)])
    if x1**2 + x2**2 <= 1:
        label.append(0)
    else:
        label.append(1)
data = np.hstack(data).reshape(-1, 2)
label = np.hstack(label).reshape(-1, 1)
plt.scatter(data[:,0], data[:,1], c=np.squeeze(label),
           cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white")
plt.show()

#获取一层神经网络边上的权重,并将这个权重的L2正则化损失
#加入名为losses的集合中
def get_weight(shape, lambda1):
    #生成一个变量
    var = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
    #add_to_collection函数将这个新生成变量的L2正则化损失项加入集合
    #这函数的第一个参数losses是集合的名字,第二个参数是要加入这个集合的内容
    tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(lambda1)(var))
    return var

x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))
#定义每一层网络中节点的个数
layer_dimension = [2, 10, 5, 3, 1]
#神经网络的层数
n_layers = len(layer_dimension)
#这个变量维护前进传播时最深层的节点,开始的时候是输入层
cur_layer = x
#当前层的节点
in_dimension = layer_dimension[0]
#通过一个循环来生成5层全连接的神经网络结构
for i in range(1, n_layers):
    #layer_dimension[i]为下一层的节点个数
    out_dimension = layer_dimension[i]
    #生成当前层中权重的变量,并将这个变量的L2正则化损失加入计算图上的集合
    weight = get_weight([in_dimension, out_dimension], 0.003)
    bias = tf.Variable(tf.constant(0.1, shape=[out_dimension]))
    #使用eLU函数
    cur_layer = tf.nn.elu(tf.matmul(cur_layer, weight) + bias)
    #进入下一层之前将一层的节点个数更新为当前层节点个数
    in_dimension = layer_dimension[i]

y = cur_layer
#在定义神经网络前向传播的同时已经将所有的L2正则化损失加入了图上的集合,
#这里只需要计算刻画模型在训练数据上表现的损失函数
mse_loss = tf.reduce_mean(tf.square(y_ - y))
#将均方差损失函数加入损失集合
tf.add_to_collection('losses', mse_loss)
#get_collection返回一个列表,这列表是所有这个集合中的元素。在这个样例中,
#这元素就是损失函数的不同部分,将它们加起来就可以得到最终的损失函数
loss = tf.add_n(tf.get_collection('losses'))


#定义不带正则项的损失函数
train_op = tf.train.AdamOptimizer(0.001).minimize(mse_loss)
TRAINING_STEPS = 40000
with tf.Session() as sess:
    tf.global_variables_initializer().run()
    for i in range(TRAINING_STEPS):
        sess.run(train_op, feed_dict={x: data, y_: label})
        if i % 2000 == 0:
            print("After %d steps, mse_loss: %f" % (i,
                    sess.run(mse_loss, feed_dict={x: data, y_: label})))
        #画出训练后的分割曲线
        xx, yy = np.mgrid[-1.2:1.2:0.1, -0.2:2.2:.01]
        grid = np.c_[xx.ravel(), yy.ravel()]
        probs = sess.run(y, feed_dict={x: grid})
        probs = probs.reshape(xx.shape)
plt.scatter(data[:,0], data[:,1], c=np.squeeze(label),
           cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white")
plt.contour(xx, yy, probs, levels=[.5], cmap="Greys", vmin=0, vmax=.1)
plt.show()

运行结果

在这里插入图片描述

        下面我们加入L2正则化

#定义带正则项的损失函数
train_op = tf.train.AdamOptimizer(0.001).minimize(loss)
TRAINING_STEPS = 40000
with tf.Session() as sess:
    tf.global_variables_initializer().run()
    for i in range(TRAINING_STEPS):
        sess.run(train_op, feed_dict={x: data, y_: label})
        if i % 2000 == 0:
            print("After %d steps, loss: %f" % (i,
                    sess.run(mse_loss, feed_dict={x: data, y_: label})))
        #画出训练后的分割曲线
        xx, yy = np.mgrid[-1.2:1.2:0.1, -0.2:2.2:.01]
        grid = np.c_[xx.ravel(), yy.ravel()]
        probs = sess.run(y, feed_dict={x: grid})
        probs = probs.reshape(xx.shape)
plt.scatter(data[:,0], data[:,1], c=np.squeeze(label),
           cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white")
plt.contour(xx, yy, probs, levels=[.5], cmap="Greys", vmin=0, vmax=.1)
plt.show()

运行结果

在这里插入图片描述

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值