图形处理
介绍计算机图形中网格处理的算法
阿兵-AI医疗
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Volume Rendering:Front To Back and Back To Front
小朋友一直想不明白:Volume Rendering技术中Front To Back and Back To Front区别。原创 2025-03-11 16:33:16 · 364 阅读 · 0 评论 -
Visual Studio编译Meshlab
下载源文件从官网上下载meshlab。解压后还不能立即编译,因为meshlab依赖开源库vcglib。下载vcglib后,将里面的文件解压到meshlab目录下的vcglib目录里。生成external项目点击下图圈出来的Open Qt Object File。然后选中external下的external.pro文件打开。最后编译下。打开meshlab项目和上一步骤一样,打开meshlab.pro。如果出现下面错误,例如错误 LNK2001 无法解析的外部符号 __imp_glBegi原创 2021-09-04 19:52:22 · 897 阅读 · 1 评论 -
3.样条曲线之NURBS
基本概念 有理函数是两个多项式之比。因此,有理样条(rational spline)是两个样条函数之比。例如,有理B样条曲线可以使用向量描述为: 通常,图像设计软件包使用非均匀节点向量表达式来构造有理B样条...原创 2020-02-04 13:07:45 · 2007 阅读 · 1 评论 -
3.样条曲线之B样条曲线
B样条曲线 B样条是使用更广泛的逼近样条类。B样条有两个贝塞尔样条所不具备的优点:1、B样条多项式次数可独立于控制点数目(有一定限制);2、B样条允许局部控制曲线或曲面。缺点是B样条比贝塞尔样条更复杂。我们可以把沿B样条曲线的坐标位置的计算表示写成混合函数公式的表达式: &nb...原创 2020-02-04 12:23:47 · 5414 阅读 · 0 评论 -
3.多边形曲线简化之Douglas-Peucker算法
Douglas-Peucker算法 根据具体情况,减少表示多边形曲线的点,可以减少内存,同时对曲线进行操作的时间。这里介绍经典的Douglas–Peucker算法,相关文献:Algorithms for the reduction of the number of pointsrequired to ...原创 2020-02-03 14:38:14 · 8449 阅读 · 0 评论 -
样条曲线
基本概念 在计算机图形中,样条曲线(spline curve)指由多项式曲线段连接而成的曲线,在每段的边界处满足特定的连续性条件。样条曲面(spline surface)可以使用两组样条曲线进行描述。 给定一...原创 2019-07-21 21:04:46 · 10274 阅读 · 0 评论 -
网格处理之补洞
基本概念        补洞算法一般分为四步:识别网格上的洞对每个洞三角化网格细分网格光滑下面列出一些论文《Filling Holes in Meshes》...原创 2019-03-09 22:06:55 · 5971 阅读 · 0 评论 -
计算几何之计算三角形的外接圆(三维)
网上三点求外接圆基本都是二维的(平面),三维的求解很少而且个别是错的。三角形外接圆        计算图形学一般处理三维的点,所以这里我们介绍三维中三点(三角形)的外接圆。如果需要二维(平面)的求解,只需要设z=0。问题描述:已原创 2019-03-09 21:21:12 · 4439 阅读 · 6 评论 -
Delaunay三角剖分
三角剖分是一种应用非常广泛的面重建技术。三角剖分将一些散乱的点云数据剖分为一些系列的三角网格。最常见的三角剖分技术是Delaunay三角剖分。Delaunay三角剖分具有许多优良的性质。如最大化最小角特性,即在所有可能的三角剖分中,其所生成的三角形的最小角的角度最大。所以,Delaunay三角剖分无论从那个区域开始构建,最终生成的三角网格是唯一的。基本概念问题描述  ...原创 2019-03-02 09:10:11 · 4719 阅读 · 2 评论 -
最优三角剖分
在图形学中,经常用到多边形三角剖分。最优三角剖分      最优三角剖分,就是把一个多边形分割成若干个三角形,求三角形某种最优解。一般都用动态规划来实现。这里我们以最小权重三角剖分(weight-minimizing triangulations)为例,根据参考资料1整理得来。问题描述原创 2019-01-06 15:49:52 · 3323 阅读 · 0 评论
分享