采样方法

一,采样方法
1,接受-拒绝抽样
2,重要性抽样
3,MCMC(马尔可夫链蒙特卡洛方法):metropolis-hasting算法和它的特例Gibbs采样算法

一,随机模拟的基本思想
1,求不规则面积:
a,分割计算
b,我们抓一把黄豆,把它们均匀地铺在矩形区域,如果我们知道黄豆的总个数S,那么只要我们数数位于不规则区域M中的黄豆个数S1,那么我们就可以求出M的面积: M=S1R/S

2,求解定积分
baf(x)dx
采用蒙特卡洛积分,即把上述式子改写为:
baf(x)g(x)/g(x)dx=ba(1/g(x))f(x)g(x)dx
f(x)g(x) 当成一个函数,g(x)看出[a,b]上的一个概率分布
抽取n个样本后,可知 n1[f(xi)/g(xi)]/n

二,常见的抽样方法
2.0,直接抽样法
2.1,接受-拒绝抽样
这个算法的基本思想是:我们需要对一个分布f(x)进行采样,但是却很难直接进行采样,所以我们想通过另外一个容易采样的分布g(x)的样本,用某种机制去除掉一些样本,从而使得剩下的样本就是来自与所求分布f(x)的样本。
条件:
1)对于任何一个x,有 f(x)Mg(x) ;
2) g(x)容易采样;
3) g(x)最好在形状上比较接近f(x)。
采样过程:
1. 对于g(x)进行采样得到一个样本 xi,xig(x) ;
2. 对于均匀分布采样 uiU(a,b) ;
3. 如果 uif(x)Mg(x) , 那么认为 xi 是有效的样本;否则舍弃该样本; (# 这个步骤充分体现了这个方法的名字:接受-拒绝)

  1. 反复重复步骤1~3,直到所需样本达到要求为止。
    这里写图片描述

2.2重要性采样
f(x)dx=f(x)g(x)g(x)dx
根据上述等式:
抽样步骤如下:
1. 选择一个容易抽样的分布g(x), 从g(x)中抽取N个样本;
2. 计算 1NNif(x)g(x) ,从而得到近似解。

2.3,MCMC抽样方法
MCMC方法的基本思想是:如果我们能构造一个转移矩阵为P的马氏链,使得该马氏链的平稳分布恰好是p(x), 那么我们从任何一个初始状态 x0 出发沿着马氏链转移, 得到一个转移序列 x0,x1,x...xn,xn+1... ,, 如果马氏链在第n步已经收敛了,于是我们就得到了 π(x) 的样本 xn,xn+1

背景知识:
马氏链定理
细致平稳条件;如果非周期马氏链的转移矩阵P和分布 π(x) 满足:

π(i)Pij=π(j)Pjiforalli,j

构造满足条件

假设我们已经有一个转移矩阵为Q马氏链(q(i,j)表示从状态i转移到状态j的概率,也可以写为q(j|i)或者q(i→j)), 显然,通常情况下 p(i)q(i,j)p(j)q(j,i)()

构造一个a(i,j),根据对称性
a(i,j)=p(j)q(j,i) a(j,i)=p(i)q(i,j)

使得 p(i)q(i,j)a(i,j)=p(j)q(j,i)a(j,i)
此时p(i)为平稳分布, α(i,j)称为接受率
理解思路:物理意义可以理解为在原来的马氏链上,从状态i 以q(i,j)的概率转跳转到状态j 的时候,我们以α(i,j) 的概率接受这个转移,于是得到新的马氏链Q′的转移概率为q(i,j)α(i,j)。
这里写图片描述
MCMC采样算法
采样概率p(x)的算法,假设我们已经又一个转移矩阵Q(对应元素q(i,j))
这里写图片描述
采样思路借助了重要性采样的思路
2.3.2,Metropolis-Hastings算法
MCMC采样的缺陷:
马氏链Q在转移的过程中的接受率α(i,j) 可能偏小,这样采样过程中马氏链容易原地踏步,拒绝大量的跳转,这使得马氏链遍历所有的状态空间要花费太长的时间,收敛到平稳分布p(x) 的速度太慢。
优化:
思路很简单,将a(i,j),a(j,i)同时扩大一定的倍数,使得
maxa(i,j),a(j,i)=1
所以得出 a(i,j)=min{p(j)q(j,i)p(i)q(i,j),1}
这里写图片描述
2.3.3,Gibbs sampling算法
二维:
gibbs采样只对z是高维(2维以上)情况有效。通过固定某个维度 xi ,然后通过其他维度 x⃗ i 的值来抽样该维度的值

由于x坐标相同的点 A(x1,y1),B(x1,y2) ,我们可以发现

p(x1,y1)p(y2|x1)=p(x1)p(y1|x1)p(y2|x1)p(x1,y2)p(y1|x1)=p(x1)p(y2|x1)p(y1|x1)p(x1,y1)p(y2|x1)=p(x1,y2)p(y1|x1)

同理,可知道,两个点无论是平行于x,y轴,两个点之间的转移概率,那么两个点之间的转移满足细致平稳条件。
从而根据下图,构造转移概率矩阵:
这里写图片描述
构造平面上任意两点之间的转移概率矩阵Q:
这里写图片描述
可得到二维的细致平稳条件:
对平面上的任意两点X,Y,满足细致平稳条件:
P(X)Q(XY)=P(Y)Q(YX)
这里写图片描述
从转移概率矩阵我们可得转移过程如下:
这里写图片描述
2.1步是从 (x0,y0)转移到(x0,y1),满足Q(A→B)=p(yB|x1)的细致平稳条件,所以会收敛到平稳分布;
2.2步是从(x0,y1)转移到(x1,y1),也会收敛到平稳分布。
也就是整个第2步是从(x0,y0)转移到(x1,y1),满足细致平稳条件,在循环多次后会收敛于平稳分布,
采样得到的 (xn,yn),(xn+1,yn+1)…就是平稳分布的样本
高维:
高维的原理和二维基本一致:
这里写图片描述
这里写图片描述
Gibbs 采样的相关性和独立性
1.马尔科夫链中的连续的样本是高度相关的
2.吉布斯采样可以看做是M-H算法的一个特例,即接受率α=1的情况
3.吉布斯采样收敛的判断
(1)图形方法
(2)蒙特卡洛误差
(3)Gelman-Rubin方法

时间序列基础

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值