Confidence Inference for Focused Learning in Stereo Matching 论文笔记

论文地址:https://arxiv.org/pdf/1809.09758.pdf

这篇文章讨论了一种在立体匹配中无监督的置信推断的方法。(所谓的无监督,不是不存在视差图的groundtruth,而是不存在confidence map的groundturth。确实有点奇怪。)DNN在深度估计中已经达到了前沿的效果,但是,通常很难判断训练的模型是做出合理的预测还是随意猜测。

作者从立体匹配中L1的概率解释出发,本质上,L1正则化先验分布是拉普拉斯分布,所以L1损失是拉普拉斯分布的独立同分布(i.i.d)。在引进新的深度置信图的同时,放松对同分布假设的要求。直觉上,拉普拉斯分布的方差对于低置信度的像素很大,而对于高置信度的像素偏小。在实验中,网络学习着衰减低置信度的像素,而关注高置信度的像素。在实验中发现,聚焦学习(focused learning)对于训练更好的收敛状态,减少过拟合很有效。

Introduction
理解置信水平对于深度学习来说往往是困难的。通常很难判断训练的模型是做出合理的预测还是随意猜测。但随着机器学习领域的发展,对这个问题的研究逐渐从小数据集开始发展到现实生活中。并应用于很多任务。
如果没有置信水平,我们往往会认为预测结果都是准确的,而有时候这种错误会有很严重的代价。
本文的成果:
1,提出了一个置信推断模型并且不需要置信标签,且这个推断置信有物理意义,可以推广到decision-making或者后处理任务中。
2,我们表明,通过新引入的置信度,相同的拉普拉斯分布假设被放松(方差不固定)。特别地,拉普拉斯分布的方差对于低置信度像素而言是大的,而对于高置信度像素而言小
3.我们从实验中观察到,所提出的方法非常有助于找到训练模型的更好的收敛状态,减少给定数据集上的过拟合。

3.1广义的置信的定义
1.对于正确的区域,置信度应该高,对于错误区域,置信度应该低。
2.置信度值在[0,1]范围内

3.2概率解释
我们已知:L1正则化先验分布是拉普拉斯分布。https://www.cnblogs.com/heguanyou/p/7688344.html

所以对于L1 loss等,用相似的推导方法,我们可以得出Loss1的内在本质是独立同分布的拉普拉斯分布。
下面是简单的推导:

令x = {x1,x2,…,xN}为网络的输入
y = {y1,y2,…,yN}为预测视差图
N为输入中的像素数图片
w是模型参数
通过最大似然估计
在这里插入图片描述
同时假设观察到的视差值满足相同分布的拉普拉斯分布,且参数w是相互独立的且满足均值为0方差为1 的拉普拉斯分布:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值