TensorFlow2简要教程(五)-keras模型保存和序列化

keras模型保存和序列化

# 构建一个简单的模型并训练
from __future__ import absolute_import, division, print_function
import tensorflow as tf
tf.keras.backend.clear_session()
from tensorflow import keras
from tensorflow.keras import layers
​
inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, activation='softmax', name='predictions')(x)
​
model = keras.Model(inputs=inputs, outputs=outputs, name='3_layer_mlp')
model.summary()
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') / 255
x_test = x_test.reshape(10000, 784).astype('float32') / 255
​
model.compile(loss='sparse_categorical_crossentropy',
              optimizer=keras.optimizers.RMSprop())
history = model.fit(x_train, y_train,
                    batch_size=64,
                    epochs=1)
​
predictions = model.predict(x_test)

1 .保存全模型

可以对整个模型进行保存,其保存的内容包括:

  • 该模型的架构
  • 模型的权重(在训练期间学到的)
  • 模型的训练配置(你传递给编译的),如果有的话
  • 优化器及其状态(如果有的话)(这使您可以从中断的地方重新启动训练)
import numpy as np
model.save('the_save_model.h5')
new_model = keras.models.load_model('the_save_model.h5')
new_prediction = new_model.predict(x_test)
np.testing.assert_allclose(predictions, new_prediction, atol=1e-6) # 预测结果一样

2. 保存为SaveModel文件

keras.experimental.export_saved_model(model, 'saved_model')
new_model = keras.experimental.load_from_saved_model('saved_model')
new_prediction = new_model.predict(x_test)
np.testing.assert_allclose(predictions, new_prediction, atol=1e-6) # 预测结果一样

3. 仅保存网络结构

仅保持网络结构,这样导出的模型并未包含训练好的参数


config = model.get_config()
reinitialized_model = keras.Model.from_config(config)
new_prediction = reinitialized_model.predict(x_test)
assert abs(np.sum(predictions-new_prediction)) >0

4. 也可以使用json保存网络结构

json_config = model.to_json()
reinitialized_model = keras.models.model_from_json(json_config)
new_prediction = reinitialized_model.predict(x_test)
assert abs(np.sum(predictions-new_prediction)) >0

5.仅保存网络参数


weights = model.get_weights()
model.set_weights(weights)
# 可以把结构和参数保存结合起来
config = model.get_config()
weights = model.get_weights()
new_model = keras.Model.from_config(config) # config只能用keras.Model的这个api
new_model.set_weights(weights)
new_predictions = new_model.predict(x_test)
np.testing.assert_allclose(predictions, new_predictions, atol=1e-6)

6. 完整的模型保存方法

json_config = model.to_json()
with open('model_config.json', 'w') as json_file:
    json_file.write(json_config)
​
model.save_weights('path_to_my_weights.h5')with open('model_config.json') as json_file:
    json_config = json_file.read()
new_model = keras.models.model_from_json(json_config)
new_model.load_weights('path_to_my_weights.h5')
​
new_predictions = new_model.predict(x_test)
np.testing.assert_allclose(predictions, new_predictions, atol=1e-6)
# 当然也可以一步到位
model.save('path_to_my_model.h5')
del model
model = keras.models.load_model('path_to_my_model.h5')

7.保存网络权重为SavedModel格式

model.save_weights('weight_tf_savedmodel')
model.save_weights('weight_tf_savedmodel_h5', save_format='h5')

8.子类模型参数保存

子类模型的结构无法保存和序列化,只能保持参数

# 构建模型
class ThreeLayerMLP(keras.Model):
  
    def __init__(self, name=None):
        super(ThreeLayerMLP, self).__init__(name=name)
        self.dense_1 = layers.Dense(64, activation='relu', name='dense_1')
        self.dense_2 = layers.Dense(64, activation='relu', name='dense_2')
        self.pred_layer = layers.Dense(10, activation='softmax', name='predictions')def call(self, inputs):
        x = self.dense_1(inputs)
        x = self.dense_2(x)
        return self.pred_layer(x)def get_model():
    return ThreeLayerMLP(name='3_layer_mlp')
​
model = get_model()
# 训练模型
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') / 255
x_test = x_test.reshape(10000, 784).astype('float32') / 255
​
model.compile(loss='sparse_categorical_crossentropy',
              optimizer=keras.optimizers.RMSprop())
history = model.fit(x_train, y_train,
                    batch_size=64,
                    epochs=1)
60000/60000 [==============================] - 2s 28us/sample - loss: 0.3217


# 保存权重参数
model.save_weights('my_model_weights', save_format='tf')# 输出结果,供后面对比
​
predictions = model.predict(x_test)
first_batch_loss = model.train_on_batch(x_train[:64], y_train[:64])# 读取保存的模型参数
new_model = get_model()
new_model.compile(loss='sparse_categorical_crossentropy',
                  optimizer=keras.optimizers.RMSprop())#new_model.train_on_batch(x_train[:1], y_train[:1])
​
new_model.load_weights('my_model_weights')
​
new_predictions = new_model.predict(x_test)
np.testing.assert_allclose(predictions, new_predictions, atol=1e-6)
​
​
new_first_batch_loss = new_model.train_on_batch(x_train[:64], y_train[:64])
assert first_batch_loss == new_first_batch_loss

参考链接
https://zhuanlan.zhihu.com/p/59481985

展开阅读全文
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值