
即插即用-Attention
文章平均质量分 88
介绍一些即插即用的模块(Attention分区)
御宇w
一个一无是处的人,既然对学术做不了贡献,那就试着做学术的搬运工
展开
-
(即插即用模块-Attention部分) 六十五、(2024 WACV) DLKA 可变形大核注意力
CNN 在提取局部细节方面表现出色,但缺乏捕捉全局信息的机制。而现有的分割方法要么依赖于 CNN 的局部信息提取能力,要么使用 Transformer 的全局信息捕捉能力,缺乏两者之间的平衡。这篇论文在LKA的基础上提出一种。: 尽管 Transformer 在捕捉全局信息方面表现出色,但其计算量随 token 数量的平方增长,限制了其深度和分辨率能力。, D-LKA 模块结合了 LKA 和可变形卷积的优势,能够在保证计算效率的同时,更好地捕捉局部和全局信息。原创 2025-05-05 10:00:00 · 872 阅读 · 0 评论 -
(即插即用模块-Attention部分) 六十四、(2024) LSKA 可分离大核注意力
VAN 中的 LKA 通过直接使用深度可分离卷积层的大卷积核,导致计算量随卷积核尺寸的增大而呈二次增长,导致模型效率低下。此外,虽然使用深度可分离卷积层的小卷积核和扩张卷积层的大卷积核组合,缓解了计算量增长的问题,但参数量仍然随卷积核尺寸的增大而增长,限制了模型在极端大卷积核下的使用。具体来说,LSKA 将深度可分离卷积层的大卷积核分解为水平方向和垂直方向的 1D 卷积核,并依次进行卷积操作,最终得到与 LKA 相同的输出结果。原创 2025-05-04 10:45:00 · 715 阅读 · 0 评论 -
(即插即用模块-Attention部分) 六十三、(2024 CVPR) MLKA 多尺度大核注意力
为了解决如何有效地建立不同区域之间的长距离相关性,并避免由于大卷积核带来的“块效应”问题。这篇论文在 LKA 的基础上提出了一种。,MLKA 的设计动机是为了解决图像超分辨率任务中,MLKA 结合了 大卷积核分解 和 多尺度机制 来实现这一目标。原创 2025-05-03 09:45:00 · 424 阅读 · 0 评论 -
(即插即用模块-Attention部分) 六十二、(2022) LKA 大核注意力
自注意力机制在 NLP 领域取得了巨大成功,但其应用于计算机视觉任务时存在三个主要问题:将图像视为一维序列,忽略了其二维结构;计算复杂度为二次方,难以处理高分辨率图像;只考虑了空间维度上的适应性,忽略了通道维度上的适应性。而卷积操作虽然能够利用局部上下文信息,但缺乏适应性。:获取通道维度上的关系。通过上述分解,LKA 能够以较低的计算成本和参数数量捕获长距离关系,并生成注意力图,从而实现自适应调整输出。:获取长距离依赖关系、:获取局部结构信息、原创 2025-05-02 10:00:00 · 392 阅读 · 0 评论 -
(即插即用模块-Attention部分) 六十一、(2024 ACCV) LIA 基于局部重要性的注意力
旨在保证性能的前提下,降低计算复杂度,实现高效的 2-order 信息交互。: 利用局部重要性生成注意力图,对特征图进行加权,增强重要信息,抑制无关信息。: 计算复杂度高,运行速度慢,不适合轻量级 SR 模型。: 通过计算每个像素周围区域的局部重要性,识别图像中关键信息的位置。: 性能较弱,无法充分利用图像信息。原创 2025-05-01 11:30:00 · 757 阅读 · 0 评论 -
(即插即用模块-Attention部分) 六十、(2024) SCSA 空间通道协同注意力
通道和空间注意力分别为各种下游视觉任务的特征依赖性和空间结构关系提取带来了显著的改进。虽然两者的组合更有利于发挥各自的优势,但通道和空间注意力之间的协同作用尚未得到充分探索,还缺乏充分利用多语义信息的协同潜力,所以,论文提出一种新的 空间通道协同注意力模块(SCSA)。SCSA由两部分组成:**Shared Multi-Semantic Spatial Attention(SMSA )**和 Progressive Channel-wise Self-Attention(PCSA )。原创 2025-03-01 10:00:00 · 1476 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十九、(ECCV 2024) Agent Attention 代理注意力
自Vision Transformer问世以来,自注意力在计算机视觉领域取得了显著的进步。然而,之后的对于自注意力的研究都不可避免地限制了自注意力的全局接受域,阻碍了模型对远程关系进行建模的能力。而对于线性注意力,其与限制感受野的思想相反,是通过降低计算复杂度直接解决了计算挑战。在先前的线性注意力的研究中,像是采用深度卷积来保持特征多样性的方法虽然是有效的,但它们仍存在线性注意力有限的表达能力问题。原创 2025-02-28 10:00:00 · 1175 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十八、(2024 ICME) PPA 并行化补丁感知注意力
红外小目标检测是一项重要的计算机视觉任务,涉及到对红外图像中微小目标的识别和定位,而红外图像通常只包含几个像素。由于红外图像中目标的尺寸小,背景复杂等原因,使得红外图像处理技术遇到了困难。论文提出了一种 并行化补丁感知注意力(Parallelized Patch-Aware Attention)。在红外小目标检测任务中,小目标在多次下采样过程中容易丢失重要信息。而 PPA 的提出则替代了编码器和解码器基本组件中的传统卷积。原创 2025-02-27 10:41:31 · 1189 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十七、(2023) TabAttention
在处理临床数据时,由于临床数据通常包含图像和表格数据,但现有的方法通常将它们分开处理,限制了信息交互和知识转移。同时,注意力机制已被证明可以显著提高深度学习模型的性能,但很少有研究将注意力模块与表格数据相结合。所以这篇论文提出一种 TabAttention 。旨在通过引入表格数据来增强卷积神经网络 (CNN) 的性能。原创 2025-02-25 11:01:48 · 971 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十六、(2023 WACV) Skip Attention 跳跃注意力
现有方法在融合编码器和解码器特征时,通常使用特征图拼接以及卷积操作,但卷积核权重固定,限制了语义信息的流动,导致深度预测不准确。为此,这篇论文提出一种 跳跃注意力(Skip Attention),Skip Attention 旨在解决这个问题,通过窗口化交叉注意力机制,有效地融合编码器和解码器特征,提高深度预测的准确性。原创 2025-02-24 10:27:33 · 560 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十五、(2023) ESRA 高效空间压缩注意力
在现有的研究中, 虽然Transformer在捕捉长距离依赖关系方面表现出色,但其模型参数量大、计算复杂度高,容易过拟合,限制了其在计算资源有限的场景下的应用。而现有改进方法的不足:如Swin Transformer,主要通过减少模型层数或注意力头数量来降低参数量和计算复杂度,但这种方法会牺牲模型的性能。:ESRA通过使用卷积操作将MHSA中的键和值压缩到更小的维度,从而减少参数量。,ESRA 通过使用卷积操作压缩多头自注意力(MHSA)中的键和值,从而降低模型参数量和计算复杂度,同时缓解过拟合问题。原创 2025-02-23 11:07:54 · 708 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十四、(ICCV 2023) ESSA 高效SCC核自注意力
其中,SCC 是一种鲁棒的光谱相似性度量,它能够有效地衡量两个光谱曲线之间的相关性,并具有平移不变性和缩放不变性,使其对阴影和遮挡等干扰因素不敏感。在ESSA的基础上,论文还提出一种基于 Transformer 的网络架构 ESSAformer ,专门用于高光谱图像超分辨率 (HSI-SR) 任务。: 传统自注意力机制的计算复杂度为 O(N^2),其中 N 为序列长度,这在高分辨率高光谱图像中会导致巨大的计算负担。,其旨在解决传统自注意力机制在高光谱图像中存在的计算复杂度高、数据效率低的问题。原创 2025-02-22 13:02:48 · 1034 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十三、(2023) MCA 多维度协同注意力
此外,现有的注意力机制往往引入了较高的模型复杂性和计算负担,限制了其在资源受限设备上的应用。MCA 通过提出了一种轻量级且高效的多维协同注意力机制,通过三个分支结构同时推理通道、高度和宽度维度上的注意力。: 使用全局平均池化和全局标准差池化聚合特征响应,并通过自适应组合机制将平均池化和标准差池化特征进行融合,增强特征描述符的信息性和可辨别性。MCA 的基本原理便是通过三条分支互相配合,具体来说,: 类似于通道分支,但聚合的是高度维度上的特征响应。: 类似于通道分支,但聚合的是宽度维度上的特征响应。原创 2025-02-21 13:56:40 · 784 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十二、(CVPR 2023) TKSA Top-K稀疏注意力
标准 Transformer 中的自注意力机制在图像去雨任务中存在一些局限性:全局信息交互:标准自注意力对所有查询-键对进行计算,容易引入无关信息,干扰特征聚合,影响图像细节恢复。冗余特征:全连接计算模式放大了较小的相似度权重,导致特征交互和聚合过程易受噪声影响,产生冗余或不相关的特征表示。为了解决这些问题,这篇论文提出一种 Top-k稀疏注意力(Top-K Sparse Attention)。原创 2025-02-20 11:03:36 · 1044 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十一、(TPAMI 2022) EA 外部注意力
论文首先指出了现有的自注意力机制缺陷:计算复杂度高: 自注意力机制的计算复杂度为 O(N^2),难以直接应用于图像等大规模输入。忽略样本间关系: 自注意力机制仅关注单个样本内部元素之间的关系,忽略了不同样本之间的潜在关联,限制了其能力和灵活性。所以这篇论文提出一种 外部注意力(External Attention),希望通过外部注意力机制学习更具代表性的特征,同时降低计算成本。原创 2025-02-19 10:24:03 · 633 阅读 · 0 评论 -
(即插即用模块-Attention部分) 五十、(2021) SSA 简化自注意力
Transformer 模型在语音识别任务中表现出色,但模型复杂度较高,参数量巨大,导致解码延迟和部署困难。此外,现有的简化方法如全注意力层等,虽然能够减少模型大小,但性能损失较大。所以这篇论文为了解决以上短板,提出一种 简化自注意力(Simplified Self-Attention)。原创 2025-02-19 10:23:51 · 322 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十九、(TMI 2022) HAA 混合自适应注意力
在应对超声图像分割时,时常存在一些挑战:超声图像复杂性: 超声图像具有复杂的纹理、相似的强度分布、肿瘤形态多样性和边界模糊等特点,这使得分割任务变得困难,尤其是对于形状不规则的恶性肿瘤。而现有方法也存在一些局限性,现有的深度学习方法,如 U-Net,虽然在医学图像分割方面取得了成功,但其在超声图像分割中仍然面临着以下问题:感受野固定: 传统卷积操作的感受野固定,难以捕捉不同尺度特征。注意力机制单一: 现有的注意力机制往往只关注单个维度(通道或空间),难以有效应对复杂的分割任务。因此,这篇论文提出一种 混合自原创 2025-01-20 21:05:36 · 1392 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十八、(ECCV 2022) SCA 简化通道注意力
这篇论文主要就效率和性能两方面对通道注意力做出了改进:对于提升效率方面:传统的ChannelAttention(CA)模块包含非线性激活函数和全连接层,计算量较大。对于保持性能方面:论文尽可能保持CA模块带来的性能提升,即更好地捕捉通道间的依赖关系,增强特征表达能力。论文通过提出一种简化通道注意力(SimplifiedChannelAttention)来减少计算量,提升模型运行效率。原创 2025-01-19 14:07:39 · 1600 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十七、(WACV 2020) ULSA 超轻量子空间注意力
在现有的研究当中,CNN和传统注意力机制都存在着一定的局限性: 即虽然CNN 在图像识别等领域取得了显著成果,但其计算复杂度和参数数量仍然很高,限制了其在资源受限设备上的应用,现有的注意力机制(如 SE-Net, CBAM 等)虽然能够有效提升特征表达能力,但其计算复杂度和参数数量也相对较高,不适合轻量级 CNN。而子空间学习却有着以下优势: 子空间学习通过将特征图划分为多个子空间,可以分别学习每个子空间的注意力图,可以有效地捕捉不同尺度和不同频率的特征信息,从而提升特征表达能力。基于此,这篇论文提出一种原创 2025-01-18 12:09:18 · 967 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十六、(ICCV 2023) FLA 聚焦线性注意力
在现有的研究中,有如下两点的不足之处,即 **自注意力机制的局限性**: 自注意力机制在视觉 Transformer 中取得了巨大成功,但其计算复杂度呈平方级增长 (O(N^2)),限制了其在大规模图像上的应用。**线性注意力机制的不足**: 线性注意力机制通过近似 Softmax 操作来降低计算复杂度 (O(N)),但往往会导致性能下降或引入额外的计算开销。这篇论文提出一种 **聚焦线性注意力(Focused Linear Attention)**,其核心目标是解决视觉 Transformer 中自注意力原创 2025-01-17 12:07:00 · 1188 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十五、(2023) MixAttention 混合注意力
对于现有的高光谱图像去噪方法,在探索不同波段之间的光谱相关性以及每个波段内的特征交互方面存在局限性。此外,低级和高级特征通常对不同空间-光谱区域表现出不同的重要性,而当前算法尚未充分利用这一点。基于这些因素,这篇论文提出一种 混合注意力(MixAttention),在此之上,还提出一种 Mixed Attention Network 用来更好的解决上述去噪存在的局限性。原创 2025-01-16 11:01:32 · 1042 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十四、(ICIP 2022) HWA 半小波注意力
传统的图像增强方法主要关注图像在空间域的特征信息,而忽略了时频域上的特征信息。而小波变换能够将图像分解为不同频率的子带,从而在时频域上分析图像特征,捕获图像的细节信息。所以,这篇论文提出一种 **半小波注意力(Half Wavelet Attention)**,旨在利用小波变换的优势,从另一个维度提取图像特征,丰富特征表达,从而提升低光图像增强的效果。原创 2025-01-15 18:31:38 · 1835 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十三、(TIM 2023) LSGA 轻量自高斯注意力
在现有的研究中存在以下两个问题,即 Transformer 计算成本高: 传统 Transformer 使用 QKV (Query-Key-Value) 结构进行自注意力计算,需要大量参数和计算量,导致模型复杂度高,运行效率低。位置信息缺失: Transformer 无法直接获取 token 的位置信息,这可能导致模型在处理图像时无法区分中心像素和周围像素的特征,影响分类精度。这篇论文提出一种 轻量自高斯注意力(Light Self-Gaussian-Attention),其是一种轻量级的自注意力机制,用于原创 2025-01-14 14:53:13 · 1335 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十二、(2023) OCA 正交通道注意力
论文首先分析了现有通道注意力机制的局限性:SENet 使用全局平均池化 (GAP) 作为压缩方法,但丢弃了低频信息。而 FcaNet 则使用离散余弦变换 (DCT) 来压缩特征,但需要手动选择频率,且计算成本高。此外,对于正交滤波器:正交滤波器能够从特征空间的不同子空间中提取信息,从而提供更丰富的特征表示。正交滤波器允许网络为每个通道赋予意义,从而提高注意力压缩的有效性。这篇论文提出一种 正交通道注意力(Orthogonal Channel Attention),OCA 是一种用于提高深度卷积神经网络 (D原创 2025-01-13 11:34:36 · 1372 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十一、(2023) MLCA 混合局部通道注意力
现有通道注意力机制的局限性: 大多数通道注意力机制只关注通道特征信息,忽略了空间特征信息,导致模型的表达能力或目标检测性能较差。空间注意力模块的复杂性: 现有的空间注意力模块往往结构复杂,计算量大,难以直接应用于轻量级网络模型。这篇论文提出一种 混合局部通道注意力(Mixed Local Channel Attention),MLCA 的提出便是为了解决现有通道注意力机制的局限性,并提高目标检测网络的性能。原创 2025-01-12 11:54:12 · 1046 阅读 · 0 评论 -
(即插即用模块-Attention部分) 四十、(ICLR 2023) SAA 挤压增强轴向注意力
论文首先分析了目前研究中存在的几个问题,即全局语义提取需求: 语义分割任务需要模型能够捕捉图像中像素之间的长距离依赖关系,从而获得全局语义信息。Transformer 效率问题: Transformer 的全局自注意力机制计算复杂度高,导致在移动设备上进行高分辨率语义分割时效率低下。局部细节丢失问题: 一些轻量级的注意力机制,如窗口注意力,虽然提高了效率,但会丢失局部细节信息。所以,这篇论文提出一种 挤压增强轴向注意力(Squeeze-enhanced Axial Attention) ,SAA 是 Sea原创 2025-01-11 12:19:28 · 1085 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十九、(ICCV 2023) A-SA 自适应自注意力
传统的自注意力机制 (Self-Attention) 在图像超分辨率 (Image Super-Resolution) 任务中存在一些局限性:全局性 vs. 局部性:自注意力机制擅长建模全局依赖关系,但忽略了图像中局部信息的建模。单一维度:现有的自注意力机制主要关注空间维度或通道维度,无法有效融合两个维度的信息。为了克服上述局限性,这篇论文提出一种 自适应注意力(Adaptive Self-Attention)。A-SA 通过引入自适应交互模块 (AIM) 来增强自注意力机制的性能。此外,A-SA 进一步分原创 2025-01-10 10:56:35 · 1118 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十八、(2023) FECA 频率增强通道注意力
尽管深度学习模型在时间序列预测 (TSF) 任务中表现出色,但主流模型有时会产生与实际结果偏差较大的预测。分析表明,这可能是由于模型捕获频率信息的能力有限。实际数据集中通常包含丰富的频率信息,而现有模型往往忽略了这一点。为了解决这一问题,这篇论文提出一种 频率增强通道注意力(Frequency Enhanced Channel Attention),FECA旨在提高模型提取频率特征的能力,解决傅里叶变换带来的吉布斯现象和高频噪声问题。原创 2025-01-09 10:53:03 · 1334 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十七、(2023) DAB 双重注意力模块
现有的 Transformer 存在一些局限性: Transformer 在提取全局特征方面表现出色,但其注意力机制主要关注单向的序列关系,难以捕捉图像中复杂的空间和通道特征。而且 U-Net 在提取局部特征方面表现出色,但其缺乏全局上下文信息,难以捕捉图像的整体结构。为此,这篇论文提出一种 DA-Block ,其结合了 Transformer 和 U-Net 的优势,并针对图像分割任务进行了优化。原创 2025-01-08 11:53:42 · 1262 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十六、(2023) DCA 二重交叉注意力
U-Net 及其变体尽管在医学图像分割任务中取得了良好的性能,但仍然存在一些局限性,具体来说,卷积操作的局部性: 无法捕捉不同特征之间的长距离依赖关系。跳跃连接的语义差距: 简单地连接编码器和解码器特征会导致语义信息丢失,难以有效地融合低级特征。为了解决这些问题,这篇论文提出一种 二重交叉注意力(Dual Cross-Attention)。DCA 模块利用交叉注意力机制,有效地提取多尺度编码器特征中的通道和空间依赖关系,从而缩小编码器和解码器之间的语义差距。原创 2025-01-07 11:25:39 · 2046 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十五、(CVPR 2023) FSA 频域自注意力
传统的 Transformer 模型在图像去模糊任务中表现出色,但其 scaled dot-product attention 计算过程存在效率问题。该计算需要将 query token 与所有 key token 进行矩阵乘法,导致时间复杂度和空间复杂度较为复杂。为了解决这个问题,研究者们提出了多种方法,例如降低图像分辨率、减少 patch 数量或基于特征深度域计算 attention。然而,这些方法都存在一些缺点,例如信息损失或忽略空间信息。所以这篇论文提出一种 频域自注意力(Frequency dom原创 2025-01-06 11:30:42 · 1469 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十四、(2022) FACMA 频率感知跨通道注意力
现有的 RGB-D 显著目标检测方法通常将 RGB 图像和深度图视为两种模态,并平等地对待它们。然而,这两种模态在频域中存在差异,例如,RGB 图像包含更多高频成分(细节、纹理),而深度图包含更多低频成分(平坦区域)。而传统的注意力机制(如全局平均池化)则难以保留不同模态中互补的频率成分,从而导致信息丢失。原创 2025-01-05 12:04:43 · 1494 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十三、(2021) SPA 显著位置注意力
在现有的自注意力机制中,其建模长距离依赖关系方面表现出色,但其计算复杂度和内存需求巨大,限制了其在实际应用中的使用。此外,论文还指出了并非所有从全局范围内收集的信息都对上下文建模有益。例如,背景中的纹理信息可能会干扰模型的判断。所以,这篇论文提出一种 显著位置注意力(Salient Positions Attention) 来解决前面提出的问题,并且降低计算复杂度和内存需求原创 2025-01-04 12:46:00 · 1041 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十二、(CVPR 2020) RGA 关系感知全局注意力
传统的注意力机制大多采用局部卷积,无法有效利用全局结构信息。非局部网络虽然可以收集全局信息,但其使用关系的方式过于简单,缺乏足够的适应性和挖掘能力。由于特征图上不同位置/节点之间的成对相关性/亲和力包含着丰富的结构信息,例如聚类模式,这些都有助于推断语义和注意力。所以,这篇论文提出一种 关系感知全局注意力(Relation-Aware Global Attention),其通过探索特征图上不同位置/节点之间的成对相关性/亲和力,来学习更具判别力的特征。原创 2025-01-03 11:03:04 · 1129 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十一、(AAAI 2020) Feature Attention 特征注意力
在现有的图像去雾网络中,通常平等对待通道特征和像素特征,但这无法有效处理图像中雾气分布不均和不同通道特征权重差异的情况。而且雾气分布不均,薄雾区域和厚雾区域的权重应明显不同,不同通道特征包含的加权信息也完全不同。这篇论文提出一种 特征注意力(Feature Attention)。原创 2025-01-02 12:11:37 · 1191 阅读 · 0 评论 -
(即插即用模块-Attention部分) 三十、(ICCV 2023) EAA 有效附加注意力
在现有的研究中,传统的 Multi-Head Self-Attention (MHSA) 计算 复杂度高,难以在移动设备上实时运行。而现有的 Additive Attention 则需要计算 key 和 value 之间的显式交互,这限制了其效率和灵活性。所以,这篇论文进一步提出一种 有效附加注意力(Efficient Additive Attention) 。旨在解决 Transformer 模型在移动设备上部署时遇到的效率问题。原创 2025-01-01 15:34:19 · 1487 阅读 · 0 评论 -
(即插即用模块-Attention部分) 二十九、(ECCV 2023) GMSA 分组多尺度自注意力
传统自注意力机制的计算复杂度随特征图尺寸呈平方级增长,限制了其在超分辨率等低层次视觉任务中的应用。并且传统自注意力机制通常在小尺寸窗口内计算,难以有效建模图像中像素之间的长距离依赖关系,从而影响超分辨率效果。所以,这篇论文提出一种 分组多尺度自注意力 (Group-wise Multi-scale Self-Attention) 。旨在解决传统自注意力机制在图像超分辨率任务中计算复杂度高、感受野受限的问题。原创 2024-12-31 12:48:27 · 1352 阅读 · 0 评论 -
(即插即用模块-Attention部分) 二十八、(TIM 2023) AGCA 自适应图通道注意力
论文首先指出现有的注意力模块的一些不足之处,即无法有效区分钢铁表面图像和自然图像之间的差异。因此,论文提出了一种自适应图通道注意力(AGCA)模块,AGCA 通过将图卷积理论引入通道注意力。将每个通道作为特征顶点,之间的关系用邻接矩阵来表示。论文中通过分析图来对特征进行非局部(NL)操作,大大提高了特征表示能力。原创 2024-12-10 11:22:00 · 1510 阅读 · 0 评论 -
(即插即用模块-Attention部分) 二十七、(ICME 2023) Bilinear Attention 双线性注意力
传统 CNN 模型缺乏全局建模能力,容易受到噪声干扰,且容易在网络深层丢失目标特征。除此之外,Transformer 模型具有强大的全局特征表征能力,但可能无法有效检测缺乏明显特征的红外小目标。针对这些问题,论文提出了一种双线性注意力(Bilinear Attention),并顺势提出一种Convolution Linear Fusion Transformer(CLFT) 模块进行特征提取和融合,有效地增强了目标特征,抑制了噪声。原创 2024-12-09 10:45:39 · 1294 阅读 · 0 评论 -
(即插即用模块-Attention部分) 二十六、(ICCV 2023) MSLA 多尺度线性注意力
现有模型的局限性存在以下短处:计算成本高: 现有的高分辨率密集预测模型往往依赖于复杂的模型结构,例如 softmax 注意力机制、大卷积核等,这会导致计算成本高昂,难以在硬件设备上部署。性能提升有限: 一些轻量级的模型虽然计算成本较低,但性能提升有限,难以满足实际应用的需求。为了解决现有高分辨率密集预测模型在效率和性能之间的权衡问题。这篇论文提出一种新的多尺度线性注意力(Multi-Scale Linear Attention)。原创 2024-12-08 10:55:32 · 1061 阅读 · 0 评论