一、求组合数
二、隔板法
隔板法是組合數學的方法,用來處理n個無差別的球放進k個不同的盒子的問題。可一般化為求不定方程的解數,並利用母函數解決問題。
隔板法與插空法的原理一樣。
应用隔板法必须满足3个条件:
- 这n个元素必须互不相异;
- 所分成的每一组至少分得1个元素;
- 分成的组别彼此相异。
基本例子
把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?
分析: 10个相同的小球, 中间有9个空格可以插入板, 插入两块板就分成3部分, 所以是C(9, 2)
例1. 求方程 x+y+z=10的正整数解的个数
分析:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x、y、z之值(如下图)。则隔法与解的个数之间建立了一一对立关系,故解的个数为C(n-1,m-1)=C(9,2)=36(个)。
添加元素隔板法
例2. 求方程 x+y+z=10的非负整数解的个数。
分析:注意到x、y、z可以为零,故例1解法中的限定“每空至多插一块隔板”就不成立了,怎么办呢?只要添加三个球,给x、y、z各添加一个球,这样原问题就转化为求 x+y+z=13的正整数解的个数了,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况?易得解的个数为C(n+m-1,m-1)=C(12,2)=66(个)。
例3. 把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?
分析: 我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为 把9个相同小球放3不同箱子,每箱至少1个,几种方法? C(8,2)=28
例4. 将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。(减少球数用隔板法)
分析: 先将第二个盒子放1个,第三个盒子放2个,第四个盒子放3