loss function & cost function & objective function

1. 中文翻译

  • loss function: 损失函数
  • cost function:代价函数
  • objective function:目标函数

2. 解释

如果有个函数,我们想对其求极大值或者极小值,通常会将这个函数称为 Objective function。
目标函数是优化问题中的一个概念。任何一个优化问题包括两个部分:(1)目标函数,最终是要最大化或者最小化这个函数;(2)约束条件,且约束条件是可选的。

当我们是想求极小值时,便会以 cost function (loss function)来称呼该目标函数

  • Cost function 常被用来求最优化问题;而 Loss function 常在参数估计中使用
  • Loss function 通常是针对单个训练样本而言;Cost Function 通常是针对整个训练集的总损失

3. 举例

以 linear regression 为例:
在这里插入图片描述
objective function: a r g m i n b J ( b 0 , b 1 ) argmin_b J(b_0,b_1) argminbJ(b0,b1)

4. 总结

  • 损失函数/代价函数是对模型或者算法的准确性的最直接的描述
  • 目标函数则是损失函数/代价函数的递进,目标函数考虑的可能不仅仅有模型算法的准确性,还可能要考虑模型的复杂度,可解释度等等的问题(在损失函数的基础之上加上各种正则项)

三者之间的关系: A loss function is a part of a cost function which is a type of an objective function

  1. 目标函数是损失函数
    最小二乘拟合:给定一组的样本点,求一条直线去拟合这些样本点
    a r g m i n β ∑ ( β T x i − y i ) 2 argmin_{\beta} \sum(\beta^Tx_i-y_i)^2 argminβ(βTxiyi)2
  2. 目标函数但大于损失函数
    脊回归 :类似于最小二乘拟合,不过脊回归假设参数足够简单。此时需要对β做正则化处理。
    a r g m i n β ∑ ( β T x i − y i ) 2 + γ β T β argmin_{\beta} \sum(\beta^Tx_i-y_i)^2+{\gamma}\beta^T\beta argminβ(βTxiyi)2+γβTβ
  3. 目标函数但没有损失函数
    极大似然估计:硬币正面的概率是 p,反面的概率是 (1−p)。将这枚硬币抛了100次后,要使42次正面向上,58次反面向上最大,求 p
    a r g m a x p { p 42 ( 1 − p ) 58 } argmax_p\{p^{42}(1-p)^{58}\} argmaxp{p42(1p)58}
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值