对于给定的 n 个数 a1, a2, … , an ,依次求出相邻两数之和,将得到一个新数列。重复上述操作,最后结果将变成一个数。问这个数除以 m 的余数与哪些数无关?例如 n=3 , m=2 时,第一次求和得到 a1+a2 , a2+a3 ,再求和得到 a1+2a2+a3 ,它除以 2 的余数和 a2 无关。 1 ≤ n ≤ 105 , 2 ≤ m ≤ 109 。
样例:
输入:
3 2
5 4
输出:
1
2
2
2 4
每个输出的第一行为无关的元素的个数,第二行为元素的位置。
根据归纳可得,最后加和的结果是:
C
n
−
1
0
a
1
+
C
n
−
1
1
a
2
+
+
C
n
−
1
2
a
3
+
.
.
.
+
C
n
−
1
n
−
1
a
n
C_{n-1}^0a_1+C_{n-1}^1a_2++C_{n-1}^2a_3+...+C_{n-1}^{n-1}a_n
Cn−10a1+Cn−11a2++Cn−12a3+...+Cn−1n−1an
也就是寻找 $ C_{n-1}^{i-1}$ 里面有哪些是 m 的倍数,但是当 n 为
1
0
5
10^5
105 时,
a
1
a_1
a1 的系数大致为
1
0
5
10^5
105,
a
2
a_2
a2 的系数大致为
1
0
10
10^{10}
1010,
a
4
a_4
a4 的系数大致为
1
0
20
10^{20}
1020,这样必须使用高精度才能存下来。
关于组合数有一个递推式:
C
n
k
=
n
−
k
+
1
k
C
n
k
−
1
C_n^k=\frac {n-k+1} k C_n^{k-1}
Cnk=kn−k+1Cnk−1
直接递推每个系数除以 m 的余数不可行,因为递推式中
n
−
k
+
1
k
\frac {n-k+1} k
kn−k+1 并不都为整数。整除的部分除以一个数也会产生余数。
而根据唯一分解定理
m
=
p
1
b
1
p
2
b
2
.
.
.
p
k
b
k
m=p_1^{b_1}p_2^{b_2}...p_k^{b_k}
m=p1b1p2b2...pkbk
其中,
p
1
,
p
2
,
p
k
p_1,p_2,p_k
p1,p2,pk 都为素数。
遍历 p k p_k pk,检验每个系数所能分解出的 p k p_k pk 的指数是否小于 b k b_k bk,若小于,则说明这个系数不是 m 的倍数。
遍历完成之后剩下的就是系数为 m 倍数的数
完整程序:
//#define LOCAL
#include <iostream>
#include <stdio.h>
#include <time.h>
#include <algorithm>
#include <cstring>
#include <string>
#include <math.h>
#include <vector>
#include <map>
#include <bitset>
#include <sstream>
#include <map>
using namespace std;
const int maxn=100000+3;
int bad[maxn];
void prime_factors(int m,vector<int>& primes)
{
int c=floor(sqrt(m)+0.5);
for(int i=2; i<=c; i++)
{
while(m%i==0)
{
primes.push_back(i);
while(m%i == 0)
{
m /= i;
}
}
}
// 不可能有两个比 sqrt(m)大的素因子。
if(m>1)
primes.push_back(m);
}
int main()
{
#ifdef LOCAL
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif // LOCAL
int n,m;
while(cin>>n>>m)
{
memset(bad,0,sizeof(bad));
vector<int> primes;
prime_factors(m,primes);
n--;
for(int i=0; i<primes.size(); i++)
{
int p=primes[i],min_e=0;
int e=0,x=m;
while(x%p==0)
{
min_e++;
x /= p;
}
for(int k=1; k<n; k++)
{
x=n-k+1;
while(x%p==0)
{
e++;
x /= p;
}
x=k;
while(x%p==0)
{
e--;
x /= p;
}
if(e<min_e) bad[k]=1;
}
}
vector<int> ans;
for(int i=1; i<n; i++)
{
if(!bad[i])
ans.push_back(i+1);
}
cout<<ans.size()<<endl;
if(ans.size()>0)
{
cout<<ans[0];
}
for(int i=1; i<ans.size(); i++)
{
cout<<" "<<ans[i];
}
cout<<"\n";
}
return 0;
}