UVa1635 无关的元素

UVa1635 无关的元素

对于给定的 n 个数 a1, a2, … , an ,依次求出相邻两数之和,将得到一个新数列。重复上述操作,最后结果将变成一个数。问这个数除以 m 的余数与哪些数无关?例如 n=3 , m=2 时,第一次求和得到 a1+a2 , a2+a3 ,再求和得到 a1+2a2+a3 ,它除以 2 的余数和 a2 无关。 1 ≤ n ≤ 105 , 2 ≤ m ≤ 109 。

样例:

输入:

3 2
5 4

输出:

1
2
2
2 4

每个输出的第一行为无关的元素的个数,第二行为元素的位置。

根据归纳可得,最后加和的结果是:
C n − 1 0 a 1 + C n − 1 1 a 2 + + C n − 1 2 a 3 + . . . + C n − 1 n − 1 a n C_{n-1}^0a_1+C_{n-1}^1a_2++C_{n-1}^2a_3+...+C_{n-1}^{n-1}a_n Cn10a1+Cn11a2++Cn12a3+...+Cn1n1an
也就是寻找 $ C_{n-1}^{i-1}$ 里面有哪些是 m 的倍数,但是当 n 为 1 0 5 10^5 105 时, a 1 a_1 a1 的系数大致为 1 0 5 10^5 105, a 2 a_2 a2 的系数大致为 1 0 10 10^{10} 1010, a 4 a_4 a4 的系数大致为 1 0 20 10^{20} 1020,这样必须使用高精度才能存下来。

关于组合数有一个递推式:
C n k = n − k + 1 k C n k − 1 C_n^k=\frac {n-k+1} k C_n^{k-1} Cnk=knk+1Cnk1
直接递推每个系数除以 m 的余数不可行,因为递推式中 n − k + 1 k \frac {n-k+1} k knk+1 并不都为整数。整除的部分除以一个数也会产生余数。

而根据唯一分解定理
m = p 1 b 1 p 2 b 2 . . . p k b k m=p_1^{b_1}p_2^{b_2}...p_k^{b_k} m=p1b1p2b2...pkbk
其中, p 1 , p 2 , p k p_1,p_2,p_k p1,p2,pk 都为素数。

遍历 p k p_k pk,检验每个系数所能分解出的 p k p_k pk 的指数是否小于 b k b_k bk,若小于,则说明这个系数不是 m 的倍数。

遍历完成之后剩下的就是系数为 m 倍数的数

完整程序:

//#define LOCAL
#include <iostream>
#include <stdio.h>
#include <time.h>
#include <algorithm>
#include <cstring>
#include <string>
#include <math.h>
#include <vector>
#include <map>
#include <bitset>
#include <sstream>
#include <map>

using namespace std;

const int maxn=100000+3;
int bad[maxn];

void prime_factors(int m,vector<int>& primes)
{
    int c=floor(sqrt(m)+0.5);
    for(int i=2; i<=c; i++)
    {
        while(m%i==0)
        {
            primes.push_back(i);
            while(m%i == 0)
            {
                m /= i;
            }
        }
    }
    // 不可能有两个比 sqrt(m)大的素因子。
    if(m>1)
        primes.push_back(m);
}

int main()
{
#ifdef LOCAL
    freopen("data.in", "r", stdin);
    freopen("data.out", "w", stdout);
#endif // LOCAL
    int n,m;
    while(cin>>n>>m)
    {
        memset(bad,0,sizeof(bad));
        vector<int> primes;
        prime_factors(m,primes);
        n--;
        for(int i=0; i<primes.size(); i++)
        {
            int p=primes[i],min_e=0;
            int e=0,x=m;
            while(x%p==0)
            {
                min_e++;
                x /= p;
            }
            for(int k=1; k<n; k++)
            {
                x=n-k+1;
                while(x%p==0)
                {
                    e++;
                    x /= p;
                }
                x=k;
                while(x%p==0)
                {
                    e--;
                    x /= p;
                }
                if(e<min_e) bad[k]=1;
            }

        }
        vector<int> ans;
        for(int i=1; i<n; i++)
        {
            if(!bad[i])
                ans.push_back(i+1);
        }
        cout<<ans.size()<<endl;
        if(ans.size()>0)
        {
            cout<<ans[0];
        }
        for(int i=1; i<ans.size(); i++)
        {
            cout<<" "<<ans[i];
        }
        cout<<"\n";
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值