10.2 计数与概率基础

这篇博客介绍了计数与概率的基础概念,包括加法原理、乘法原理、容斥原理以及有重复元素的全排列。讲解了杨辉三角与二项式定理,并涉及数论中的计数问题,如约数个数和与n互素的数。此外,还讨论了编码与解码问题,以及离散概率初步,如抛硬币问题和全概率公式。文章通过UVA在线判题题目加深对理论的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

10.2 计数与概率基础

就是排列组合啦······

加法原理

做一件事情有n个办法,第i个办法有pi种方案,则一共需要p1+p2+······pn种方案。

乘法原理

做一件事情有n个步骤,第i个步骤有pi种方案,则一共有p1p2······pn种方案。

容斥原理

这里书上这里写的不好:

在这里插入图片描述

(截自百度百科,证明过程一般分为计次数和归纳法两种,这里不多作赘述)

有重复元素的全排列

有k个元素,其中第i个元素有ni个,求全排列的个数。

分析:没啥好分析的,这个有高中学历的其实都知道hhhh,答案为(n1+n2+n3·······nk)!/(n1!n2!n3!······nk!)。

可重复选择的组合

有n个不同元素,每个元素可以重复选择多次,一共选k个元素,有多少种选法?

分析:我们假设第i个元素选择了xi次,相当于求:x1+x2······+xn=k (xi都为自然数)的解的个数。如果都是正整数,那么这个问题显然用“插板法”就可以非常轻松的解决了。于是我们另yi=xi+1,则相当于求:y1+y2······+yn=n+k (yi都为正整数)的解的个数。那这个问题的答案就很简单了,n+k-1个空格插n-1个板,答案为C(n+k-1,n-1)。


10.2.1 杨辉三角与二项式定理

也是高中学过的知识点,两个图分别代表杨辉三角的两个性质:
在这里插入图片描述
组合数性质:

在这里插入图片描述

这里没什么重点要提的,唯一可能有点重要的就是用递推的方法去求C(n,k)的值,代码如下:

C[0]=1;//表示C(n,0)=1
for (int i=1;i<=k;i++) C[i]=C[i-1]*(n-i+1)/i;
10-6 无关的元素 (UVA 1635)

对于给定的n个数a1,a2······an,依次求出相邻两数之和来得到一个新数列。重复上述操作,最后结果将变成一个数。问这个数除以m的余数与哪些数无关?

例如n=3,m=2时,求和得到的即是a1+2a2+a3,这个结果除以m的余数与a2无关。

分析:显然最终的结果即是:C(n-1,0)*a1+C(n-1,1)*a2+C(n-1,2)*a3·······+C(n-1,n-1)*an。如果结果除以m的余数与ai无关,那么C(n-1,i-1)除以m的余数一定为0。于是这个问题就变成了判断C(n-1,0),C(n-1,1)······C(n-1,n-1)中哪些是m的倍数。

这个问题用上面介绍过的递推的方法就可以了(但在做除法的时候会有一些细节问题需要处理)。


10.2.2 数论中的计数问题

约数的个数

给出正整数n的唯一分解式n=p1a1p2a2p3a3···pkak,求n的正约数的个数。

分析:显然,n的任意正约数,将他转化为唯一分解形式,一定不会产生新的素因子,也就是说一定肯定表示成p1b1p2b2p3b3···pkbk的形式,bi可以是0,1,2······ai共ai+1种情况,而且不同的素因子之间保持相护独立的关系。于是有n的正约数的个数为:

(a1+1)(a2+1)(a3+1)·······(ak+1)

小于n且与n互素的数

给出正整数n的唯一分解式n=p1a1p2a2p3a3···pkak,求1-n中与n互素的数的个数T。

分析&#x

<think>好的,我需要帮用户实现集群机器人的数字孪生系统,特别是在ROS框架下的整体架构和路径规划算法的融合。用户之前已经用Isaac Sim搭建了仿真环境,单个机器人可以通过ROS驱动,现在需要扩展到整个集群,并加入新颖的路径规划算法。 首先,整体架构方面,用户需要四层结构:物理层、虚拟层、控制层和数据层。物理层包括真实机器人和传感器,虚拟层用Gazebo或Webots,控制层用ROS主节点和任务调度,数据层用PostgreSQL和时序数据库。之前我提到过这些,用户可能希望更详细的框架图,特别是ROS部分。 然后,路径规划部分,用户需要集成新算法。之前提到的A*、RRT*、D* Lite和蚁群算法都是经典,但用户想要新颖的,可能需要考虑最新的比如深度强化学习(DRL)或改进的RRT变种,如Informed RRT*。这些算法如何融入ROS节点,可能需要设计一个算法调度器,根据环境动态选择。 接下来是ROS驱动的具体实现。每个机器人需要有自己的命名空间,避免话题冲突。路径规划节点应该订阅环境信息,发布路径到控制节点。使用ROS2的DDS可以提升通信效率,但用户现在可能还在用ROS1,需要确认。 数据同步是关键,虚实之间的状态同步需要TF树和卡尔曼滤波来减少误差。碰撞检测部分,GJK算法实时性高,但集群环境下可能需要优化,比如空间划分或并行计算。 用户还想要思维导图,需要涵盖系统架构、通信机制、路径规划流程和验证测试。可能需要分模块展示,每个部分的关键技术和交互流程。 最后,验证方案要考虑多机器人协作的场景,比如MTSP问题和动态障碍物。性能指标要综合执行时间、能耗和路径偏差,可能需要加权公式。 需要注意的是,用户可能希望具体的实现步骤和代码示例,比如如何编写ROS节点,如何集成算法。此外,是否考虑分布式计算或负载均衡,特别是在大规模集群中。还有,如何保证实时性和容错性,避免单点故障。 总结下来,我需要组织架构图,强调ROS各层的交互,详细说明路径规划模块的设计,并提供思维导图的结构,确保用户能清晰看到各部分的连接和数据流。</think># 集群机器人数字孪生系统框架与思维导图 --- ## 一、整体架构图(ROS核心) ``` ┌───────────────────────┐ │ 物理层 │ │ (真实机器人集群) │←─────┐ └──────────┬────────────┘ │ │ ROS-TCP/UDP │ 状态同步 ┌──────────▼────────────┐ │ │ 虚拟层 │ │ │ (Isaac Sim/Gazebo) ├──────┘ └──────────┬────────────┘ │ ROS Master ┌──────────▼────────────┐ │ 控制层 │ │ ├─ 任务调度中心 │ │ ├─ 路径规划引擎 │ │ └─ 碰撞检测模块 │ └──────────┬────────────┘ │ ROS Service/Action ┌──────────▼────────────┐ │ 数据层 │ │ ├─ 环境地图数据库 │ │ ├─ 轨迹历史存储 │ │ └─ 性能分析日志 │ └───────────────────────┘ ``` --- ## 二、路径规划算法融合思维导图 ### 2.1 核心模块交互 ``` ┌───────────────┐ │ 任务分配系统 │ │ (MTSP求解器) │ └──────┬────────┘ │ ┌────────────────────────────────────▼──────────────────────────────────┐ │ ROS Control Layer │ │ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────┐│ │ │ 全局规划器 │◄─────►│ 局部规划器 │◄─────►│ 避障模块 │◄─────►│ 执行器 ││ │ │ (A*/RRT*) │ │ (DWA/APF) │ │ (GJK检测) │ └───────┘│ │ └─────┬─────┘ └─────┬─────┘ └─────┬─────┘ │ │ │ │ │ │ └────────┼───────────────────┼───────────────────┼─────────────────────┘ ▼ ▼ ▼ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ 环境感知 │ │ 动态障碍物预测 │ │ 实时位姿反馈 │ │ (点云/视觉数据) │ │ (LSTM轨迹预测) │ │ (TF坐标树) │ └─────────────────┘ └─────────────────┘ └─────────────────┘ ``` --- ## 三、ROS驱动路径规划实现流程 ### 3.1 数据流与节点设计 ```mermaid graph LR A[任务管理节点] -->|发布目标点| B(全局规划节点) B -->|生成全局路径| C{路径优化器} C -->|D* Lite更新| D[局部规划节点] D -->|速度指令| E[机器人控制器] E -->|位姿反馈| F[TF坐标广播] F -->|同步数据| G[数字孪生引擎] G -->|环境更新| A H[障碍物检测节点] -->|实时点云| C I[集群通信中间件] -->|状态共享| D ``` --- ## 四、关键实现细节 ### 4.1 新颖算法集成方案 **深度强化学习(DRL)与经典算法混合架构:** ``` ┌───────────────┐ │ DRL决策网络 │ │ (PPO/SAC算法) │ └──────┬────────┘ │ 生成候选路径 ┌───────────────────────────────▼───────────────────────────────┐ │ 多目标优化层 │ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │ │ 能耗评估 │ │ 时间评估 │ │ 安全评估 │ │ 协作评估 │ │ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ └───────────────────────────────┬───────────────────────────────┘ │ 加权选择 ┌──────▼────────┐ │ RRT*细化 │ │ (路径平滑处理) │ └──────┬────────┘ ▼ [ROS Trajectory Msg] ``` ### 4.2 ROS节点通信设计 ```python # 典型节点配置示例 class ClusterPlanner: def __init__(self): # 全局规划服务 self.global_srv = rospy.ServiceProxy('/global_plan', GlobalPlan) # 局部规划订阅 self.local_sub = rospy.Subscriber('/lidar_obstacles', PointCloud2, self.obstacle_cb) # 集群通信 self.swarm_pub = rospy.Publisher('/swarm_states', SwarmPose, queue_size=10) def hybrid_planning(self): # DRL生成初始路径 drl_path = self.drl_predict() # 使用PyTorch模型 # 经典算法优化 optimized_path = self.rrt_star.optimize(drl_path) # 发布到ROS话题 self.publish_path(optimized_path) ``` --- ## 五、验证与调试工具链 1. **可视化调试工具:** - Rviz显示集群路径(不同颜色区分机器人) - PlotJuggler分析算法耗时分布 - Gazebo+ROS Bag数据回放 2. **性能评估指标:** ```math \text{综合评分} = \frac{1}{N}\sum_{i=1}^N \left( \alpha \frac{T_i}{T_{max}} + \beta \frac{E_i}{E_{budget}} + \gamma \frac{D_i}{D_{safe}} \right)^{-1} ``` 其中$\alpha+\beta+\gamma=1$,$T_i$为任务时间,$E_i$为能耗,$D_i$为安全距离 --- ## 六、实现步骤建议 1. **环境搭建阶段** - 使用`roslaunch`配置多机器人命名空间 ```xml <group ns="robot_$(arg id)"> <node pkg="agv_control" type="driver" name="driver"/> </group> ``` - 在Isaac Sim中部署ROS Bridge插件 2. **算法开发阶段** - 基于`move_base`框架扩展规划器插件 - 使用`ros_control`实现虚实执行器接口 3. **系统集成阶段** - 采用`docker-compose`部署数据库集群 - 使用`rosdistro`管理算法依赖 --- **思维导图重点标记:** - **红色箭头**:实时数据流(<10ms延迟要求) - **蓝色模块**:可替换算法组件 - **黄色标注**:关键性能瓶颈点 --- **相关问题:** 1. 如何在ROS中实现多机器人间的避撞协同规划? 2. 数字孪生系统中如何保证虚实同步的实时性? 3. 深度强化学习在路径规划中的具体落地方法? 4. ROS2的DDS配置如何优化大规模集群通信?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值