pytorch实现线性回归以及多元回归

最近在学习pytorch,现在把学习的代码放在这里,下面是github链接

直接附上github代码:https://github.com/hacker-wei/pytorch/tree/master

# 实现一个线性回归
# 所有的层结构和损失函数都来自于 torch.nn
# torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是Variable

x_train = np.array([[3.3],[4.4],[5.5],[6.71],[6.93],[4.168],[9.779],[6.182],[7.59],[2.167],[7.042],[10.791],[5.313],[7.997],[3.1]],dtype=np.float32)
y_train = np.array([[1.7],[2.76],[2.09],[3.19],[1.694],[1.573],[3.366],[2.596],[2.53],[1.221],[2.827],[3.465],[1.65],[2.904],[1.3]],dtype=np.float32)

# 首先我们需要将array转化成tensor,因为pytorch处理的单元是Tensor

x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)


# def a simple network

class LinearRegression(nn.Module):
    def __init__(self):
        super(LinearRegression,self).__init__()
        self.linear = nn.Linear(1, 1)  # input and output is 2_dimension
    def forward(self, x):
        out = self.linear(x)
        return out


if torch.cuda.is_available():
    model = LinearRegression().cuda()
    #model = model.cuda()
else:
    model = LinearRegression()
    #model = model.cuda()

# 定义loss function 和 optimize func
criterion = nn.MSELoss()   # 均方误差作为优化函数
optimizer = torch.optim.SGD(model.parameters(),lr=1e-3)
num_epochs = 30000
for epoch in range(num_epochs):
    if torch.cuda.is_available():
        inputs = Variable(x_train).cuda()
        outputs = Variable(y_train).cuda()
    else:
        inputs = Variable(x_train)
        outputs = Variable(y_train)

    # forward
    out = model(inputs)
    loss = criterion(out,outputs)

    # backword
    optimizer.zero_grad()  # 每次做反向传播之前都要进行归零梯度。不然梯度会累加在一起,造成不收敛的结果
    loss.backward()
    optimizer.step()

    if (epoch +1)%20==0:
        print('Epoch[{}/{}], loss: {:.6f}'.format(epoch+1,num_epochs,loss.data))


model.eval()  # 将模型变成测试模式
predict = model(Variable(x_train).cuda())
predict = predict.data.cpu().numpy()
plt.plot(x_train.numpy(),y_train.numpy(),'ro',label = 'original data')
plt.plot(x_train.numpy(),predict,label = 'Fitting line')
plt.show()

 结果如图所示:

多元回归:

# _*_encoding=utf-8_*_
# pytorch 里面最基本的操作对象是Tensor,pytorch 的tensor可以和numpy的ndarray相互转化。
# 实现一个线性回归
# 所有的层结构和损失函数都来自于 torch.nn
# torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是Variable


# 实现 y = b + w1 *x + w2 *x**2 +w3*x**3
import os
os.environ['CUDA_DEVICE_ORDER']="PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES']='0'
import torch
import numpy as np
from torch.autograd import Variable
import matplotlib.pyplot as plt
from torch import nn


# pre_processing
def make_feature(x):
    x = x.unsqueeze(1)   # unsquenze 是为了添加维度1的,0表示第一维度,1表示第二维度,将tensor大小由3变为(3,1)
    return torch.cat([x ** i for i in range(1, 4)], 1)

# 定义好真实的数据


def f(x):
    W_output = torch.Tensor([0.5, 3, 2.4]).unsqueeze(1)
    b_output = torch.Tensor([0.9])
    return x.mm(W_output)+b_output[0]  # 外积,矩阵乘法


# 批量处理数据
def get_batch(batch_size =32):

    random = torch.randn(batch_size)
    x = make_feature(random)
    y = f(x)
    if torch.cuda.is_available():

        return Variable(x).cuda(),Variable(y).cuda()
    else:
        return Variable(x),Variable(y)



# def model
class poly_model(nn.Module):
    def __init__(self):
        super(poly_model,self).__init__()
        self.poly = nn.Linear(3,1)
    def forward(self,input):
        output = self.poly(input)
        return output

if torch.cuda.is_available():
    print("sdf")
    model = poly_model().cuda()
else:
    model = poly_model()


# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

epoch = 0
while True:
    batch_x, batch_y = get_batch()
    #print(batch_x)
    output = model(batch_x)
    loss = criterion(output,batch_y)
    print_loss = loss.data
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch = epoch +1
    if print_loss < 1e-3:
        print(print_loss)
        break

model.eval()
print("Epoch = {}".format(epoch))

batch_x, batch_y = get_batch()
predict = model(batch_x)
a = predict - batch_y
y = torch.sum(a)
print('y = ',y)
predict = predict.data.cpu().numpy()
plt.plot(batch_x.cpu().numpy(),batch_y.cpu().numpy(),'ro',label = 'Original data')
plt.plot(batch_x.cpu().numpy(),predict,'b', ls='--',label = 'Fitting line')
plt.show()





 

PyTorch实现多元线性回归可以通过定义一个模型和使用梯度下降算法来训练模型。下面是一个示例代码来演示如何使用PyTorch进行多元线性回归: ```python import torch import torch.nn as nn import torch.optim as optim # 定义数据集 x_train = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]) y_train = torch.tensor([[3.0], [6.0], [9.0], [12.0]]) # 定义模型 class LinearRegression(nn.Module): def __init__(self, input_size, output_size): super(LinearRegression, self).__init__() self.linear = nn.Linear(input_size, output_size) def forward(self, x): return self.linear(x) model = LinearRegression(3, 1) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # 训练模型 num_epochs = 1000 for epoch in range(num_epochs): # 前向传播 outputs = model(x_train) loss = criterion(outputs, y_train) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 打印训练信息 if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 使用训练好的模型进行预测 x_test = torch.tensor([[2.0, 3.0, 4.0]]) predicted = model(x_test) print('Predicted value: {:.2f}'.format(predicted.item())) ``` 这段代码首先定义了一个包含3个特征变量和1个输出变量的数据集。然后定义了一个继承自`nn.Module`的线性回归模型,并使用均方误差损失函数和随机梯度下降优化器。接下来,通过迭代训练模型,每100个epoch打印一次训练信息。最后,使用训练好的模型对一个测试样本进行预测,并输出预测结果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值