Tornado 多进程实现分析

本文探讨Tornado网络框架如何利用多进程提高效率。通过创建socket并fork子进程,所有子进程监听相同文件描述符,接收连接请求。当连接请求到来时,子进程尝试建立连接,一个成功建立后,其他子进程遇到错误则返回不做处理,从而确保请求仅由一个子进程处理,提升服务效率。
摘要由CSDN通过智能技术生成

引子

Tornado 是一个网络异步的的web开发框架, 并且可以利用多进程进行提高效率, 下面是创建一个多进程 tornado 程序的例子.

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import os
import time

import tornado.web
import tornado.httpserver
import tornado.ioloop
import tornado.netutil
import tornado.process


class LongHandler(tornado.web.RequestHandler):

	def get(self):
		self.write(str(os.getpid()))
		time.sleep(10)


if __name__ == "__main__":
	app = tornado.web.Application(([r'/', LongHandler], ))
	sockets = tornado.netutil.bind_sockets(8090)
	tornado.process.fork_processes(2)
	server = tornado.httpserver.HTTPServer(app)
Flask和Tornado都是Python的Web框架,它们提供了一种方式来构建和部署Web应用程序。关于多进程的问题,这两个框架有一些不同的处理方式。 在Flask中,多进程可以通过使用WSGI服务器来实现。WSGI(Web Server Gateway Interface)是Python应用程序和Web服务器之间的通用接口。你可以使用像Gunicorn、uWSGI或者mod_wsgi这样的WSGI服务器来运行Flask应用程序,并配置它们以使用多个工作进程来处理并发请求。这样就可以充分利用系统资源,提高应用程序的性能和并发处理能力。 在Tornado中,它本身就是一个异步的Web服务器,基于单线程事件循环的模型。默认情况下,Tornado在单个进程中运行,并通过事件循环来处理并发请求。然而,Tornado也支持多进程部署。你可以使用Tornado提供的`tornado.process`模块来创建多个子进程,并在每个子进程中运行一个独立的Tornado实例。这样可以通过利用多个CPU核心来提高应用程序的并发处理能力。 需要注意的是,使用多进程部署时需要考虑共享资源的问题,例如数据库连接、缓存等。你需要确保在多个进程之间正确管理和同步这些资源,以避免冲突和数据不一致的问题。 总结来说,无论你选择使用Flask还是Tornado,都可以通过使用适当的服务器来实现多进程部署,从而提高应用程序的性能和并发处理能力。具体的实现方式会根据你选择的服务器和部署环境而有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值