最新推荐系统集锦

WWW2023

1. Submodular Maximization in the Presence of Biases with Applications to Recommendation

Anay Mehrotra and Nisheeth K. Vishnoi

2. Scoping Fairness Objectives and Identifying Fairness Metrics for Recommender Systems: The Practitioners’ Perspective

Jessie J. Smith, Lex Beattie and Henriette Cramer

3. P-MMF: Provider Max-min Fairness Re-ranking in Recommender System

Chen Xu, Sirui Chen, Jun Xu, Weiran Shen, Xiao Zhang, Gang Wang and Zhenhua Dong

4. Fairly Adaptive Negative Sampling for Recommendations

Xiao Chen, Wenqi Fan, Jingfan Chen, Haochen Liu, Zitao Liu, Qing Li and Zhaoxiang Zhang

5. RL-MPCA: A Reinforcement Learning Based Multi-Phase Computation Allocation Approach for Recommender Systems

Jiahong Zhou, Shunhui Mao, Guoliang Yang, Bo Tang, Qianlong Xie, Lebin Lin, Xingxing Wang and Dong Wang

6. Collaboration-Aware Graph Convolutional Network for Recommender Systems

Yu Wang, Yuying Zhao, Yi Zhang and Tyler Derr

7. Enhancing Hierarchy-Aware Graph Networks with Deep Dual Clustering for Session-based Recommendation

Jiajie Su, Xiaolin Zheng, Weiming Liu, Fei Wu, Chaochao Chen and Haoming Lyu

8. ConsRec: Learning Consensus Behind Interactions for Group Recommendation

Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Jiawei Zhang, Yangyong Zhu and Philip Yu

9. Semi-decentralized Federated Ego Graph Learning for Recommendation

Liang Qu, Ningzhi Tang, Ruiqi Zheng, Quoc Viet Hung Nguyen, Zi Huang, Yuhui Shi and Hongzhi Yin

10. Joint Internal Multi-Interest Exploration and External Domain Alignment for Cross Domain Sequential Recommendation

Weiming Liu, Xiaolin Zheng, Chaochao Chen, Jiajie Su, Xinting Liao, Mengling Hu and Yanchao Tan

11. Intra and Inter Domain HyperGraph Convolutional Network for Cross-Domain Recommendation

Zhongxuan Han, Xiaolin Zheng, Chaochao Chen, Wenjie Cheng and Yang Yao

12. Dual Intent Enhanced Graph Neural Network for Session-based New Item Recommendation

Di Jin, Luzhi Wang, Yizhen Zheng, Guojie Song, Fei Jiang, Xiang Li, Wei Lin and Shirui Pan

13. ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation

Dan Zhang, Yifan Zhu, Yuxiao Dong, Yuandong Wang, Wenzheng Feng, Evgeny Kharlamov and Jie Tang

14.  Enhancing User Personalization in Conversational Recommenders

Allen Lin, Ziwei Zhu, Jianling Wang and James Caverlee

15. LINet: A Location and Intention-Aware Neural Network for Hotel Group Recommendation

Ruitao Zhu, Detao Lv, Yao Yu, Ruihao Zhu, Zhenzhe Zheng, Ke Bu, Quan Lu and Fan Wu

16. Multi-Modal Adversarial Self-Supervised Learning for Recommendation

Wei Wei, Chao Huang, Lianghao Xia and Chuxu Zhang

17. Distillation from Heterogeneous Models for Top-K Recommendation

Seongku Kang, Wonbin Kweon, Dongha Lee, Jianxun Lian, Xing Xie and Hwanjo Yu

18.  On the Theories Behind Hard Negative Sampling for Recommendation

Wentao Shi, Jiawei Chen, Fuli Feng, Jizhi Zhang, Junkang Wu, Chongming Gao and Xiangnan He

19.  Fine-tuning Partition-aware Item Similarities for Efficient and Scalable Recommendation

Tianjun Wei, Jianghong Ma and Tommy W. S. Chow

20.  Exploration and Regularization of the Latent Action Space in Recommendation

Shuchang Liu, Qingpeng Cai, Bowen Sun, Yuhao Wang, Dong Zheng, Peng Jiang, Kun Gai, Ji Jiang, Xiangyu Zhao and Yongfeng Zhang

21.   Bootstrap Latent Representations for Multi-modal Recommendation

Xin Zhou, Hongyu Zhou, Yong Liu, Zhiwei Zeng, Chunyan Miao, Pengwei Wang, Yuan You and Feijun Jiang

22.   Two-Stage Constrained Actor-Critic for Short Video Recommendation

Qingpeng Cai, Zhenghai Xue, Chi Zhang, Wanqi Xue, Shuchang Liu, Ruohan Zhan, Xueliang Wang, Tianyou Zuo, Wentao Xie, Dong Zheng, Peng Jiang and Kun Gai

23.   Recommendation with Causality enhanced Natural Language Explanations

Jingsen Zhang, Xu Chen, Jiakai Tang, Weiqi Shao, Quanyu Dai, Zhenhua Dong and Rui Zhang

24.  Cross-domain recommendation via user interest alignment

Chuang Zhao, Hongke Zhao, Ming He, Jian Zhang and Jianping Fan

25.   A Simple Data-Augmented Framework For Smoothed Recommender System

Zhenlei Wang and Xu Chen

26.   Dual-interest Factorization-heads Attention for Sequential Recommendation

Guanyu Lin, Chen Gao, Yu Zheng, Jianxin Chang, Yanan Niu, Yang Song, Zhiheng Li, Depeng Jin and Yong Li

27.   Contrastive Collaborative Filtering for Cold-Start Item Recommendation

Zhihui Zhou, Lilin Zhang and Ning Yang

28.   Anti-FakeU: Defending Shilling Attacks on Graph Neural Network based Recommender Model

Xiaoyu You, Chi Lee, Daizong Ding, Mi Zhang, Fuli Feng, Xudong Pan and Min Yang

29.   Compressed Interaction Graph based Framework for Multi-behavior Recommendation

Wei Guo, Chang Meng, Enming Yuan, Zhicheng He, Huifeng Guo, Yingxue Zhang, Bo Chen, Yaochen Hu, Ruiming Tang, Xiu Li and Rui Zhang

30.   A Counterfactual Collaborative Session-based Recommender System

Wenzhuo Song, Shoujin Wang, Yan Wang, Kunpeng Liu, Xueyan Liu and Minghao Yin

31.  Correlative Preference Transfer with Hierarchical Hypergraph Network for Multi-Domain Recommendation

Zixuan Xu, Penghui Wei, Shaoguo Liu, Weimin Zhang, Liang Wang and Bo Zheng

32.  Automated Self-Supervised Learning for Recommendation with Masked Graph Transformer

Lianghao Xia, Chao Huang, Chunzhen Huang, Kangyi Lin, Tao Yu and Ben Kao

33.   Improving Recommendation Fairness via Data Augmentation

Lei Chen, Le Wu, Kun Zhang, Richang Hong, Defu Lian, Zhiqiang Zhang, Jun Zhou and Meng Wang

34.  ColdNAS: Search to Modulate for User Cold-Start Recommendation

Shiguang Wu, Yaqing Wang, Qinghe Jing, Daxiang Dong, Quanming Yao and Dejing Dou

35.  AutoS2AE: Automate to Regularize Sparse Shallow Autoencoders for Recommendation

Rui Fan, Jin Chen, Yuanhao Pu, Zhihao Zhu, Defu Lian and Enhong Chen

36.  Quantize Sequential Recommenders Without Private Data

Lingfeng Shi, Yuang Liu, Jun Wang and Wei Zhang

37. Interaction-level Membership Inference Attack Against Federated Recommender Systems

Wei Yuan, Chaoqun Yang, Quoc Viet Hung Nguyen, Lizhen Cui, Tieke He and Hongzhi Yin

38. Contrastive Learning with Interest and Conformity Disentanglement for Sequential Recommendation

Yuhao Yang, Chao Huang, Lianghao Xia, Chunzhen Huang, Da Luo and Kangyi Lin

39. Clustered Embedding Learning for Large-scale Recommender Systems

Yizhou Chen, Guangda Huzhang, Qingtao Yu, Hui Sun, Heng-Yi Li, Jingyi Li, Yabo Ni, Anxiang Zeng, Han Yu and Zhiming Zhou

40. Adap-: Adpatively Modulating Embedding Magnitude for Recommendation

Jiawei Chen, Junkang Wu, Jiancan Wu, Xuezhi Cao, Sheng Zhou and Xiangnan He

41. Robust Preference-Guided Denoising for Graph based Social Recommendation

Yuhan Quan, Jingtao Ding, Chen Gao, Lingling Yi, Depeng Jin and Yong Li

42. MMMLP: Multi-modal Multilayer Perceptron for sequence recommendation

Jiahao Liang, Xiangyu Zhao, Muyang Li, Zijian Zhang, Haochen Liu and Liu Zitao

43. Response-act Guided Reinforced Dialogue Generation for Mental Health Counseling

Aseem Srivastava, Ishan Pandey, Md Shad Akhtar and Tanmoy Chakraborty

44. Few-shot News Recommendation via Cross-lingual Transfer

Taicheng Guo, Lu Yu, Basem Shihada and Xiangliang Zhang

45. User Retention-oriented Recommendation with Decision Transformer

Kesen Zhao, Lixin Zou, Xiangyu Zhao, Maolin Wang and Dawei Yin

46. Cooperative Retriever and Ranker in Deep Recommenders

Xu Huang, Defu Lian, Jin Chen, Liu Zheng, Xing Xie and Enhong Chen

47. Learning Vector-Quantized Item Representation for Transferable Sequential Recommenders

Yupeng Hou, Zhankui He, Julian McAuley and Wayne Xin Zhao

48. Learning Vector-Quantized Item Representation for Transferable Sequential Recommenders

Yupeng Hou, Zhankui He, Julian McAuley and Wayne Xin Zhao

49. Show Me The Best Outfit for A Certain Scene: A Scene-aware Fashion Recommender System

Tangwei Ye, Liang Hu, Qi Zhang, Zhong Yuan Lai, Usman Naseem and Dora D. Liu

50. Multi-Behavior Recommendation with Cascading Graph Convolutional Network

Zhiyong Cheng, Sai Han, Fan Liu, Lei Zhu, Zan Gao and Yuxin Peng

51.  AutoMLP: Automated MLP for Sequential Recommendations

Muyang Li, Zijian Zhang, Xiangyu Zhao, Minghao Zhao, Runze Wu and Ruocheng Guo

52.  NASRec: Weight Sharing Neural Architecture Search for Recommender Systems

Tunhou Zhang, Dehua Cheng, Yuchen He, Zhengxing Chen, Xiaoliang Dai, Liang Xiong, Feng Yan, Hai Li, Yiran Chen and Wei Wen

53.  Membership Inference Attacks Against Sequential Recommender Systems

Zhihao Zhu, Chenwang Wu, Rui Fan, Defu Lian and Enhong Chen

54.  Communicative MARL-based Relevance Discerning Network for Repetition-Aware Recommendation

Kaiyuan Li, Pengfei Wang, Haitao Wang, Qiang Liu, Xingxing Wang, Dong Wang and Shangguang Wang

55.  Invariant Collaborative Filtering to Popularity Distribution Shift

An Zhang, Jingnan Zheng, Xiang Wang, Yancheng Yuan and Tat-Seng Chua

56.  Modeling Temporal Positive and Negative Excitation for Sequential Recommendation

Chengkai Huang, Shoujin Wang, Xianzhi Wang and Lina Yao

57.  Personalized Graph Signal Processing for Collaborative Filtering

Jiahao Liu, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, Li Shang and Ning Gu

58.  Multi-Task Recommendations with Reinforcement Learning

Ziru Liu, Jiejie Tian, Qingpeng Cai, Xiangyu Zhao, Jingtong Gao, Shuchang Liu, Dayou Chen, Tonghao He, Dong Zheng, Peng Jiang and Kun Gai

59.  A Self-Correcting Sequential Recommender

Yujie Lin, Chenyang Wang, Zhumin Chen, Zhaochun Ren, Xin Xin, Qiang Yan, Maarten de Rijke, Xiuzhen Cheng and Pengjie Ren

60.  Cross-domain Recommendation with Behavioral Importance Perception

Hong Chen, Xin Wang, Ruobing Xie, Yuwei Zhou and Wenwu Zhu

61.  Balancing Unobserved Confounding with a Few Unbiased Ratings in Debiased Recommendations

Haoxuan Li, Yanghao Xiao, Chunyuan Zheng and Peng Wu

62.  Code Recommendation for Open Source Software Developers

Yiqiao Jin, Yunsheng Bai, Yanqiao Zhu, Yizhou Sun and Wei Wang

63.  Denoising and Prompt-Tuning for Multi-Behavior Recommendation

Chi Zhang, Xiangyu Zhao, Rui Chen, Qilong Han and Li Li

64.  Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation

Ziwei Fan, Zhiwei Liu, Hao Peng and Philip S Yu

65.  Confident Action Decision via Hierarchical Policy Learning for Conversational Recommendation

Heeseon Kim, Hyeongjun Yang and Kyong-Ho Lee

66.  CAMUS: Attribute-Aware Counterfactual Augmentation for Minority Users in Recommendation

Yuxin Ying, Fuzhen Zhuang, Yongchun Zhu, Deqing Wang and Hongwei Zheng

67. Dynamically Expandable Graph Convolution for Streaming Recommendation

Bowei He, Xu He, Yingxue Zhang, Ruiming Tang and Chen Ma

68. Dual Policy Learning for Aggregation Optimization in Recommender Systems

Heesoo Jung, Hogun Park and Sangpil Kim

69. Automatic Feature Selection By One-Shot Neural Architecture Search In Recommendation Systems

Haiyang Wu, He Wei, Yuekui Yang, Yangyang Tang, Meixi Liu and Jianfeng Li

70. Semi-supervised Adversarial Learning for Complementary Item Recommendation

Koby Bibas, Oren Sar Shalom and Dietmar Jannach

71. Towards Explainable Collaborative Filtering with Taste Clusters Learning

Yuntao Du, Jianxun Lian, Jing Yao, Xiting Wang, Mingqi Wu, Lu Chen, Yunjun Gao and Xing Xie

72. Towards Explainable Collaborative Filtering with Taste Clusters Learning

Yuntao Du, Jianxun Lian, Jing Yao, Xiting Wang, Mingqi Wu, Lu Chen, Yunjun Gao and Xing Xie

IJCAI2023

Survey Track

1. A Survey on User Behavior Modeling in Recommender Systems

Zhicheng He, Weiwen Liu, Wei Guo, Jiarui Qin, Yingxue Zhang, Yaochen Hu, Ruiming Tang

https://arxiv.org/abs/2302.11087

User Behavior Modeling (UBM) plays a critical role in user interest learning, which has been extensively used in recommender systems. Crucial interactive patterns between users and items have been exploited, which brings compelling improvements in many recommendation tasks. In this paper, we attempt to provide a thorough survey of this research topic. We start by reviewing the research background of UBM. Then, we provide a systematic taxonomy of existing UBM research works, which can be categorized into four different directions including Conventional UBM, Long-Sequence UBM, Multi-Type UBM, and UBM with Side Information. Within each direction, representative models and their strengths and weaknesses are comprehensively discussed. Besides, we elaborate on the industrial practices of UBM methods with the hope of providing insights into the application value of existing UBM solutions. Finally, we summarize the survey and discuss the future prospects of this field.

Main Track

2. Self-supervised Graph Disentangled Networks for Review-based Recommendation

Yuyang Ren, Haonan Zhang, Qi Li, Luoyi Fu, Xinbing Wang, Chenghu Zhou

https://arxiv.org/abs/2209.01524

User review data is considered as auxiliary information to alleviate the data sparsity problem and improve the quality of learned user/item or interaction representations in review-based recommender systems. However, existing methods usually model user-item interactions in a holistic manner and neglect the entanglement of the latent intents behind them, e.g., price, quality, or appearance, resulting in suboptimal representations and reducing interpretability. In this paper, we propose a Self-supervised Graph Disentangled Networks for review-based recommendation (SGDN), to separately model the user-item interactions based on the latent factors through the textual review data. To this end, we first model the distributions of interactions over latent factors from both semantic information in review data and structural information in user-item graph data, forming several factor graphs. Then a factorized message passing mechanism is designed to learn disentangled user/item and interaction representations on the factor graphs. Finally, we set an intent-aware contrastive learning task to alleviate the sparsity issue and encourage disentanglement through dynamically identifying positive and negative samples based on the learned intent distributions. Empirical results over five benchmark datasets validate the superiority of SGDN over the state-of-the-art methods and the interpretability of learned intent factors.

3. Towards Hierarchical Policy Learning for Conversational Recommendation with Hypergraph-based Reinforcement Learning

Sen Zhao, Wei Wei, Yifan Liu, Ziyang Wang, Wendi Li, Xian-Ling Mao, Shuai Zhu, Minghui Yang, Zujie Wen

https://arxiv.org/abs/2305.02575

Conversational recommendation systems (CRS) aim to timely and proactively acquire user dynamic preferred attributes through conversations for item recommendation. In each turn of CRS, there naturally have two decision-making processes with different roles that influence each other: 1) director, which is to select the follow-up option (i.e., ask or recommend) that is more effective for reducing the action space and acquiring user preferences; and 2) actor, which is to accordingly choose primitive actions (i.e., asked attribute or recommended item) to estimate the effectiveness of the director’s option. However, existing methods heavily rely on a unified decision-making module or heuristic rules, while neglecting to distinguish the roles of different decision procedures, as well as the mutual influences between them. To address this, we propose a novel Director-Actor Hierarchical Conversational Recommender (DAHCR), where the director selects the most effective option, followed by the actor accordingly choosing primitive actions that satisfy user preferences. Specifically, we develop a dynamic hypergraph to model user preferences and introduce an intrinsic motivation to train from weak supervision over the director. Finally, to alleviate the bad effect of model bias on the mutual influence between the director and actor, we model the director’s option by sampling from a categorical distribution. Extensive experiments demonstrate that DAHCR outperforms state-of-the-art methods.

4. Sequential Recommendation with Probabilistic Logical Reasoning

Huanhuan Yuan, Pengpeng Zhao, Xuefeng Xian, Guanfeng Liu, Yanchi Liu, Victor S. Sheng, Lei Zhao

https://arxiv.org/abs/2304.11383

Deep learning and symbolic learning are two frequently employed methods in Sequential Recommendation (SR). Recent neural-symbolic SR models demonstrate their potential to enable SR to be equipped with concurrent perception and cognition capacities. However, neural-symbolic SR remains a challenging problem due to open issues like representing users and items in logical reasoning. In this paper, we combine the Deep Neural Network (DNN) SR models with logical reasoning and propose a general framework named Sequential Recommendation with Probabilistic Logical Reasoning (short for SR-PLR). This framework allows SR-PLR to benefit from both similarity matching and logical reasoning by disentangling feature embedding and logic embedding in the DNN and probabilistic logic network. To better capture the uncertainty and evolution of user tastes, SR-PLR embeds users and items with a probabilistic method and conducts probabilistic logical reasoning on users' interaction patterns. Then the feature and logic representations learned from the DNN and logic network are concatenated to make the prediction. Finally, experiments on various sequential recommendation models demonstrate the effectiveness of the SR-PLR.

5. Federated Probabilistic Preference Distribution Modelling with Compactness Co-Clustering for Privacy-Preserving Multi-Domain Recommendation

Weiming Liu, Chaochao Chen, Xinting Liao, Mengling Hu, Jianwei Yin, Yanchao Tan, Longfei Zheng

With the development of modern internet techniques, Cross-Domain Recommendation (CDR) systems have been widely exploited for tackling the data-sparsity problem. Meanwhile most current CDR models assume that user-item interactions are accessible across different domains. However, such knowledge sharing process will break the privacy protection policy. In this paper, we focus on the Privacy-Preserving Multi-Domain Recommendation problem (PPMDR). The problem is challenging since different domains are sparse and heterogeneous with the privacy protection. To tackle the above issues, we propose Federated Probabilistic Preference Distribution Modelling (FPPDM). FPPDM includes two main components, i.e., local domain modelling component and global server aggregation component with federated learning strategy. The local domain modelling component aims to exploit user/item preference distributions using the rating information in the corresponding domain. The global server aggregation component is set to combine user characteristics across domains. To better extract semantic neighbors information among the users, we further provide compactness co-clustering strategy in FPPDM ++ to cluster the users with similar characteristics. Our empirical studies on benchmark datasets demonstrate that FPPDM/ FPPDM ++ significantly outperforms the state-of-the-art models.

6. Basket Representation Learning by Hypergraph Convolution on Repeated Items for Next-basket Recommendation

Yalin Yu, Enneng Yang, Guibing Guo, Linying Jiang, Xingwei Wang

Basket representation plays an important role in the task of next-basket recommendation. However, existing methods generally adopts pooling operations to learn a basket’s representation, from which two critical issues can be identified. First, they treat a basket as a set of items independent and identically distributed. We find that items occurring in the same basket have much higher correlations than those randomly selected by conducting data analysis on a real dataset. Second, although some works have recognized the importance of items repeatedly purchased in multiple baskets, they ignore the correlations among the repeated items in a same basket, whose importance is shown by our data analysis. In this paper, we propose a novel Basket Representation Learning (BRL) model by leveraging the correlations among intra-basket items. Specifically, we first connect all the items (in a basket) as a hyperedge, where the correlations among different items can be well exploited by hypergraph convolution operations. Meanwhile, we also connect all the repeated items in the same basket as a hyperedge, whereby their correlations can be further strengthened. We generate a negative (positive) view of the basket by data augmentation on repeated (non-repeated) items, and apply contrastive learning to force more agreements on repeated items. Finally, experimental results on three real datasets show that our approach performs better than eight baselines in ranking accuracy.

7. Probabilistic Masked Attention Networks for Explainable Sequential Recommendation

Huiyuan Chen, Kaixiong Zhou, Zhimeng Jiang, Michael Yeh, Xiaoting Li, Menghai Pan, Yan Zheng, Xia Hu, Hao Yang

The recently proposed Transformer-based models are highly powerful for modeling temporal dynamics of user preference in sequential recommendation. Most of variants adopt the Softmax transformation in the self-attention layers to generate dense attention probabilities. However, real-world item sequences are often noisy, containing a mixture of true-positive and false-positive interactions. Such dense attentions inevitably assign probability mass to noisy or irrelevant items, leading to sub-optimal performance and poor explainability. To tackle these issues, we propose a Probabilistic Masked Attention Network (PMAN) to identify the sparse pattern of attentions, which is more desirable for pruning noisy items in sequential recommendation. Specifically, we employ a probabilistic mask to achieve sparse attentions under a constrained optimization framework. As such, PMAN allows to select which information is critical to be retained or dropped in a data-driven fashion. Experimental studies on real-world benchmark datasets show that PMAN is able to improve the performance of Transformers significantly, and the performance gain becomes larger for more noisy sequences. Our code and data are available in: https://anonymous.4open.science/r/PMAN_Rec-E72E.

8. Dual Personalization on Federated Recommendation

Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijian Zhang, Chengqi Zhang, Bo Yang

https://openreview.net/forum?id=8VvQ4SpvZVi

Federated recommendation is a new Internet service architecture that aims to provide privacy-preserving recommendation services in federated settings. Existing solutions are used to combine distributed recommendation algorithms and privacy-preserving mechanisms. Thus it inherently takes the form of heavyweight models at the server and hinders the deployment of on-device intelligent models to end-users. This paper proposes a novel Personalized Federated Recommendation (PFedRec) framework to learn many user-specific lightweight models to be deployed on smart devices rather than a heavyweight model on a server. Moreover, we propose a new dual personalization mechanism to effectively learn fine-grained personalization on both users and items. The overall learning process is formulated into a unified federated optimization framework. Specifically, unlike previous methods that share exactly the same item embeddings across users in a federated system, dual personalization allows mild finetuning of item embeddings for each user to generate user-specific views for item representations which can be integrated into existing federated recommendation methods to gain improvements immediately. Experiments on multiple benchmark datasets have demonstrated the effectiveness of PFedRec and the dual personalization mechanism. Moreover, we provide visualizations and in-depth analysis of the personalization techniques in item embedding, which shed novel insights on the design of recommender systems in federated settings. The code is available.

9. Curriculum Multi-Level Learning for Imbalanced Live-Stream Recommendation

Shuodian Yu, Junqi Jin, Li Ma, Xiaofeng Gao, Xiaopeng WU, Haiyang Xu, Jian Xu

In large-scale live-stream recommendation, streamers are classified into different levels based on their popularity and other metrics for marketing. Several top streamers at the head level occupy a considerable amount of exposure, resulting in an unbalanced data distribution. A unified model for all levels without consideration of imbalance issue can be biased towards head streamers and neglect the conflicts between levels. The lack of inter-level streamer correlations and intra-level streamer characteristics modeling imposes obstacles to estimating the user behaviors. To tackle these challenges, we propose a curriculum multi-level learning framework for imbalanced recommendation. We separate model parameters into shared and level-specific ones to explore the generality among all levels and discrepancy for each level respectively. The level-aware gradient descent and a curriculum sampling scheduler are designed to capture the de-biased commonalities from all levels as the shared parameters. During the specific parameters training, the hardness-aware learning rate and an adaptor are proposed to dynamically balance the training process. Finally, shared and specific parameters are combined to be the final model weights and learned in a cooperative training framework. Extensive experiments on a live-stream production dataset demonstrate the superiority of the proposed framework.

10. Discriminative-Invariant Representation Learning for Unbiased Recommendation

Hang Pan, Jiawei Chen, Fuli Feng, Wentao Shi, junkang Wu, Xiangnan He

Selection bias hinders recommendation models from learning unbiased user preference. Recent works empirically reveal that pursuing invariant user and item representation across biased and unbiased data is crucial for counteracting selection bias. However, our theoretical analysis reveals that simply optimizing representation invariance is insufficient for addressing the selection bias — recommendation performance is bounded by both representation invariance and discriminability. Worse still, current invariant representation learning methods in recommendation neglect even hurt the representation discriminability due to data sparsity and label shift. In this light, we propose a new Discriminative-Invariant Representation Learning framework for unbiased recommendation, which incorporates label-conditional clustering and prior-guided contrasting into conventional invariant representation learning to mitigate the impact of data sparsity and label shift, respectively. We conduct extensive experiments on three real-world datasets, validating the rationality and effectiveness of the proposed framework.

11. Denoised Self-Augmented Learning for Social Recommendation

Tianle Wang, Chao Huang, Lianghao Xia

Social recommendation has been increasingly investigated in a broad spectrum of online applications (e.g., e-commerce, online streaming) to leverage social information for help user-item interaction modeling. Recently, Self-Supervised Learning (SSL) has been outstandingly successful in alleviating data sparsity with the augmented learning tasks. Inspired by this, recent attempts bring the benefits of SSL into social recommendation by supplementing the main supervised task with social-aware self-supervised signals. However, social information is unavoidably noisy for characterizing user preference, due to the ubiquitous presence of interest-irrelevant social connections, e.g., colleagues or classmates who do not share many common interests. To rectify this, we propose a new social recommender with a Denoised Cross-view Self-Augmented Learning paradigm (DSAL). It not only preserves the helpful social relations for enhancing user-item interaction modeling, but also allows the personalized cross-view knowledge transfer with adaptive semantic alignment in embedding space. Experimental results on various recommendation benchmarks verify the advantages of our DSAL over state-of-the-art methods.

12. Intent-aware Recommendation via Disentangled Graph Contrastive Learning

Yuling Wang, Xiao Wang, Xiangzhou Huang, yanhua yu, Haoyang Li, Mengdi Zhang, Zirui Guo, Wei Wu

Graph neural network (GNN) based recommender systems have become one of the mainstream trends due to the powerful learning ability from user behavior data. Understanding the user intents from behavior data is the key to recommender systems, which poses two basic requirements for GNN-based recommender systems. One is how to learn complex and diverse intents especially when the user behavior is usually inadequate in reality. The other is different behaviors have different intent distributions, so how to establish their relations for a more explainable recommender system. In this paper, we present the Intent-aware Recommendation via Disentangled Graph Contrastive Learning (IDCL), which simultaneously learns interpretable intents and behavior distributions over those intents. Specifically, we first model the user behavior data as a user-item-concept graph, and design a GNN based behavior disentangling module to learn the different intents. Then we propose the intent-wise contrastive learning to enhance the intent disentangling and meanwhile infer the behavior distributions. Finally, the coding rate reduction regularization is introduced to make the behaviors of different intents orthogonal. Extensive experiments demonstrate the effectiveness of IDCL in terms of substantial improvement and the interpretability.

Special Track on AI for Good

13. GreenFlow: A Computation Allocation Framework for Building Environmentally Sound Recommendation System

Xingyu Lu, Zhining Liu, Yanchu Guan, Hongxuan Zhang, Chenyi Zhuang, Ma Wenqi, Yize Tan, Jinjie Gu, Guannan Zhang

14. Toward Job Recommendation For All

Guillaume Bied, Solal Nathan, Elia Perennes, Morgane Hoffmann, Philippe Caillou, Bruno Crépon, Christophe Gaillac, Michele Sebag

15. Keeping people active and healthy at home using a Reinforcement Learning-based fitness recommendation framework

Elias Tragos, Diarmuid O’Reilly-Morgan, JAMES GERACI, Bichen Shi, Barry Smyth, Cailbhe Doherty, Aonghus Lawlor, Neil Hurley

Demonstrations Track

16. SupervisorBot: NLP-Annotated Real-Time Recommendations of Psychotherapy Treatment Strategies with Deep Reinforcement Learning

Baihan Lin, Guillermo Cecchi, Djallel Bouneffouf

SIGIR2023

  1. Friend Ranking in Online Games via Pre-training Edge Transformers 
    #好友排序 #预训练 #腾讯 #https://arxiv.org/pdf/2302.10043.pdf

  2. Simplifying Content-Based Neural News Recommendation: On User Modeling and Training Objectives 
    #新闻推荐 #对比学习 #用户建模 #https://arxiv.org/pdf/2304.03112.pdf

  3. Blurring-Sharpening Process Models for Collaborative Filtering 
    #模糊锐化过程 #协同过滤 #https://arxiv.org/pdf/2211.09324.pdf

  4. Personalized Showcases: Generating Multi-Modal Explanations for Recommendations 
    #多模态 #个性化展示 #可解释推荐 #https://arxiv.org/pdf/2207.00422.pdf

  5. Prompt Learning for News Recommendation 
    #新闻推荐 #提示学习 #https://mp.weixin.qq.com/s/PWagQ7plZjp6HLZr8gA6Ww

  6. Intent-aware Ranking Ensemble for Personalized Recommendation 
    #用户意图 #排序 #美团 #https://mp.weixin.qq.com/s/46Fl3kMcnP2bA1t_uFjVvg

  7. Measuring Item Global Residual Value for Fair Recommendation 
    #推荐公平性 #全局剩余价值 #快手 #https://mp.weixin.qq.com/s/46Fl3kMcnP2bA1t_uFjVvg

  8. SAILER: Structure-aware Pre-trained Language Model for Legal Case Retrieval 
    #信息检索 #预训练 #华为 #https://mp.weixin.qq.com/s/46Fl3kMcnP2bA1t_uFjVvg

  9. Constructing Tree-based Index for Efficient and Effective Dense Retrieval 
    #对比学习 #信息检索 #华为 #https://mp.weixin.qq.com/s/46Fl3kMcnP2bA1t_uFjVvg

  10. Behavior Modeling for Point of Interest Search  
    #POI搜索 #用户行为建模 #滴滴 #https://mp.weixin.qq.com/s/46Fl3kMcnP2bA1t_uFjVvg

  11. Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment 
    #隐式反馈 #多行为建模 #美团 #https://mp.weixin.qq.com/s/a5fldeqChVJtZP-EgbU9Kw

  12. Contrastive State Augmentations for Reinforcement Learning-Based Recommender Systems 
    #强化学习 #对比学习 #美团 #https://mp.weixin.qq.com/s/a5fldeqChVJtZP-EgbU9Kw

  13. Towards Explainable Conversational Recommender Systems 
    #可解释性推荐 #对话推荐 #推荐评测 #https://mp.weixin.qq.com/s/a5fldeqChVJtZP-EgbU9Kw

ICLR2023

  • 1. Recommender Transformers with Behavior Pathways

  • 2. Deep Evidential Reinforcement Learning for Dynamic Recommendations

  • 3. Simple Yet Effective Graph Contrastive Learning for Recommendation

  • 4. IEDR: A Context-aware Intrinsic and Extrinsic Disentangled Recommender System

  • 5. Communication Efficient Fair Federated Recommender System

  • 6. Explainable Recommender with Geometric Information Bottleneck

  • 7. TGP: Explainable Temporal Graph Neural Networks for Personalized Recommendation

  • 8. TDR-CL: Targeted Doubly Robust Collaborative Learning for Debiased Recommendations

  • 9. Where to Go Next for Recommender Systems? ID- vs. Modality-based recommender models revisited

  • 10. Multi-Behavior Dynamic Contrastive Learning for Recommendation

  • 11. Inverse Learning with Extremely Sparse Feedback for Recommendation

  • 12. Calibration Matters: Tackling Maximization Bias in Large-scale Advertising Recommendation Systems

  • 13. StableDR: Stabilized Doubly Robust Learning for Recommendation on Data Missing Not at Random

  • 14. Personalized Reward Learning with Interaction-Grounded Learning (IGL)

  • 15. Knowledge-Driven New Drug Recommendation

  • 16. Has it really improved? Knowledge graph based separation and fusion for recommendation

  • 17. ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor

  • 18. Dual personalization for federated recommendation on devices

  • 19. Everyone's Preference Changes Differently: Weighted Multi-Interest Retrieval Model

  • 20. Enhancing Cross-Category Learning in Recommendation Systems with Multi-Layer Embedding Training

  • 21. Neural Collaborative Filtering Bandits via Meta Learning

  • 22. MaskFusion: Feature Augmentation for Click-Through Rate Prediction via Input-adaptive Mask Fusion

  • 23. Consistent Data Distribution Sampling for Large-scale Retrieval

  • 24. Clustering Embedding Tables, Without First Learning Them

WSDM2023

  • 1. Towards Universal Cross-Domain Recommendation

  • 2. IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation

  • 3. Learning to Distinguish Multi-User Coupling Behaviors for TV Recommendation

  • 4. One for All, All for One: Learning and Transferring User Embeddings for Cross-Domain Recommendation

  • 5. Slate-Aware Ranking for Recommendation

  • 6. Knowledge Enhancement for Contrastive Multi-Behavior Recommendation

  • 7. Disentangled Representation for Diversified Recommendations

  • 8. Cognition-aware Knowledge Graph Reasoning for Explainable Recommendation

  • 9. Self-Supervised Group Graph Collaborative Filtering for Group Recommendation

  • 10. Calibrated Recommendations as a Maximum Flow Problem

  • 11. DisenPOI: Disentangling Sequential and Geographical Influence for Point-of-Interest Recommendation

  • 12. Multi-Intentions Oriented Contrastive Learning for Sequential Recommendation

  • 13. Generative Slate Recommendation with Reinforcement Learning

  • 14. MUSENET: Multi-Scenario Learning for Repeat-Aware Personalized Recommendation

  • 15. A Personalized Neighborhood-based Model for Within-basket Recommendation in Grocery Shopping

  • 16. SGCCL: Siamese Graph Contrastive Consensus Learning for Personalized Recommendation

  • 17. Relation Preference oriented High-order Sampling for Recommendation

  • 18. Variational Reasoning over Incomplete Knowledge Graphs for Conversational Recommendation

  • 19. Exploiting Explicit and Implicit Item relationships for Session-based Recommendation

  • 20. Range Restricted Route Recommendation Based on Spatial Keyword

  • 21. Meta Policy Learning for Cold-Start Conversational Recommendation

  • 22. Efficiently Leveraging Multi-level User Intent for Session-based Recommendation via Atten-Mixer Network

  • 23. Improving News Recommendation with Channel-Wise Dynamic Representations and Contrastive User Modeling

  • 24. Simplifying Graph-based Collaborative Filtering for Recommendation

  • 25. AutoGen: An Automated Dynamic Model Generation Framework for Recommender System

  • 26. A Causal View for Item-level Effect of Recommendation on User Preference

  • 27. Federated Unlearning for On-Device Recommendation

  • 28. Explicit Counterfactual Data Augmentation for Recommendation

  • 29. Uncertainty Quantification for Fairness in Two-Stage Recommender Systems

  • 30. DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation

  • 31. Unbiased Knowledge Distillation for Recommendation

  • 32. VRKG4Rec: Virtual Relational Knowledge Graph for Recommendation

  • 33. Knowledge-Adaptive Contrastive Learning for Recommendation

  • 34. Heterogeneous Graph Contrastive Learning for Recommendation

  • 35. Disentangled Negative Sampling for Collaborative Filtering

  • 36. Separating Examination and Trust Bias from Click Predictions for Unbiased Relevance Ranking

  • 37. A Bird’s-eye View of Reranking: from List Level to Page Level

  • 38. CL4CTR: A Contrastive Learning Framework for CTR Prediction

  • 39. Directed Acyclic Graph Factorization Machines for CTR Prediction via Knowledge Distillation

  • 40. Pairwise Fairness in Ranking as a Dissatisfaction Measure

  • 41. Marginal-Certainty-aware Fair Ranking Algorithm

  • 42. An F-shape Click Model for Information Retrieval on Multi-block Mobile Pages

AAAI2023

1. PPGenCDR: A Stable and Robust Framework for Privacy-Preserving Cross-domain Recommendation

Liao, Xinting*; Liu, Weiming; Zheng, Xiaolin; yao, binhui; Chen, Chaochao

2. Adaptive Low-Precision Training for Embeddings in Click-Through Rate Prediction

Li, Shiwei*; Guo, Huifeng; Hou, Lu; Zhang, Wei; Tang, Xing; Tang, Ruiming; Li, Ruixuan; Zhang, Rui

https://arxiv.org/abs/2212.05735

3. Untargeted Attack against Federated Recommendation Systems via Poisonous Item Embeddings and the Defense

Yu, Yang; Liu, Qi*; Wu, Likang; Yu, Runlong; Yu, Sanshi Lei; ZHANG, ZAIXI

https://arxiv.org/abs/2212.05399

中文解读:AAAI2023 | 针对联邦推荐场景的非定向攻击与防御

4. Context-aware Safe Medication Recommendations with Molecular Graph and DDI Graph Embedding

Chen, Qianyu; Li, Xin*; Geng, Kunnan; Wang, Mingzhong

5. Factual and Informative Review Generation for Explainable Recommendation

Xie, Zhouhang; Singh, Sameer; McAuley, Julian; Majumder, Bodhisattwa Prasad*

https://arxiv.org/abs/2209.12613

6. Fair Representation Learning for Recommendation: A Mutual Information Perspective

Zhao, Chen; Wu, Le*; Shao, Pengyang; Zhang, Kun; Hong, Richang; Wang, Meng

7. Structure Aware Incremental Learning with Personalized Imitation Weights for Recommender Systems

Wang, Yuening*; Zhang, Yingxue; Valkanas, Antonios; Tang, Ruiming; Ma, Chen; Hao, Jianye; Coates, Mark

8. Towards Reliable Item Sampling for Recommendation Evaluation

Li, Dong; Jin, Ruoming*; LIU, Zhenming; Ren, Bin; Gao, Jing; Liu, Zhi

https://arxiv.org/abs/2211.15743

9. Win-Win: A Privacy-Preserving Federated Framework for Dual Target Cross-Domain Recommendation

Chen, Gaode; Zhang, Xinghua; Su, Yijun*; Lai, Yantong; Xiang, Ji; Zhang, Junbo; Zheng, Yu

10. Multiple Robust Learning for Recommendation

Li, Haoxuan*; Dai, Quanyu; Li, Yuru; Lyu, Yan; Dong, Zhenhua; Zhou, Xiao Hua; Wu, Peng

https://arxiv.org/abs/2207.10796

11. CP-Rec: Contextual Prompting for Conversational Recommender Systems

Chen, Keyu*; Sun, Shiliang

12. LANCER: A Lifetime-Aware News Recommender System

Bae, Hong-Kyun*; Ahn, Jeewon; Lee, Dongwon; Kim, Sang-Wook

13. Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation

Dang, Yizhou; Yang, Enneng; Guo, Guibing*; Jiang, Linying; Wang, Xingwei; Xu, Xiaoxiao; Sun, Qinghui; Liu, Hong

https://arxiv.org/abs/2212.08262

中文解读:AAAI2023 | 均匀序列更好: 时间间隔感知的序列推荐数据增强方法

14. Cross-domain Adaptative Learning for Online Advertisement Customer Lifetime Value Prediction

Su, Hongzu; Du, Zhekai*; Li, Jingjing; Zhu, Lei; Lu, Ke

15. Practical Cross-system Shilling Attacks with Limited Access to Data

Zeng, Meifang; Li, Ke; Jiang, Bingchuan; Cao, Liujuan; Li, Hui*

16. Cross-domain Few-shot Graph Classification with a Reinforced Task Coordinator

Zhang, Qiannan*; Pei, Shichao; Yang, Qiang; Zhang, Chuxu; Chawla, Nitesh; Zhang, Xiangliang

17. SAH: Shifting-aware Asymmetric Hashing for Reverse k-Maximum Inner Product Search

Huang, Qiang*; Wang, Yanhao; Tung, Anthony

https://arxiv.org/abs/2211.12751

18. AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task Learning

Yang, Enneng*; Pan, Junwei; Wang, Ximei; Yu, Haibin; Shen, Li; Chen, Xihua;

https://arxiv.org/abs/2211.15055

19. Few-Shot Composition Learning for Image Retrieval with Prompt Tuning

Wu, Junda; Wang, Rui*; Zhao, Handong; Zhang, Ruiyi; Lu, Chaochao; Li, Shuai; Henao, Ricardo

20. Unsupervised Legal Evidence Retrieval via Contrastive Learning with Approximate Aggregated Positive

Li, Haoxuan*; Dai, Quanyu; Li, Yuru; Lyu, Yan; Dong, Zhenhua; Zhou, Xiao Hua; Wu, Peng

21. ConTextual Mask AutoEncoder for Dense Passage Retrieval

Wu, Xing*; Ma, Guangyuan; Lin, Meng; Lin, Zijia; Wang, Zhongyuan; Hu, Songlin

https://arxiv.org/abs/2208.07670

22. fmLRE: A Low-resource Relation Extraction Model based on Feature Mapping Similarity Calculation 

Wang, Peng*; Shao, Tong; Ji, Ke; Li, Guozheng; Ke, Wenjun

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Linux常用脚本集锦包括以下几个方面: 1. 文件处理脚本:通过脚本可以实现对文件的批量复制、移动、删除和重命名等操作,极大地提高了文件管理的效率。 2. 系统管理脚本:通过一系列脚本可以实现系统资源的监控、服务的启停、日志的备份等功能。比如通过编写脚本实现对CPU、内存和磁盘使用率的实时监控,并在达到一定阈值时触发警报。 3. 网络管理脚本:通过脚本可以实现网络设备的配置、网络连接的监控和网络故障的排查。比如通过编写脚本实现IP地址的自动分配和网关的配置,或者通过ping命令定时监测网络连通性。 4. 数据备份脚本:通过脚本可以实现对数据的定时备份,确保数据的安全和可恢复性。比如通过编写脚本实现对数据库的备份,并将备份文件传输到远程服务器。 5. 系统自动化脚本:通过自动化脚本可以实现系统的自动化部署、安装和配置。比如通过编写脚本实现自动化安装软件包和配置文件,以减少人工操作的重复性工作。 6. 日志分析脚本:通过脚本可以实现对日志文件的分析和统计。比如通过编写脚本实现对Web服务器访问日志的分析,找出访问最频繁的IP地址和访问量最多的页面。 这些都是常见的Linux脚本应用场景,通过编写脚本来完成这些任务,能够提高工作效率和自动化程度,减少了人为操作的出错可能性。因此,掌握这些常用脚本的使用方法对于Linux系统管理员和应用开发人员来说是非常重要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值