快速读论文----AD-GCL:Adversarial Graph Augmentation to Improve Graph Contrastive Learning

本文探讨了如何使用对抗性图增强策略来改进图对比学习(GCL)。针对图神经网络(GNN)在自监督学习中可能捕获冗余信息的问题,提出了AD-GCL框架。AD-GCL通过优化边缘下降的图增强,避免了在训练过程中学习到的冗余特征,从而提高下游任务的性能。实验表明,AD-GCL在无监督、半监督和属性预测等任务上优于现有方法,实现了性能提升。
摘要由CSDN通过智能技术生成

???用对抗的方式得到增广的view:归根结底还是两个view的对比。而另一个view是通过drop边进行的。所以,卖点就是:T(.)。   (自己比较好奇的就是如何利用伯努力分布。)

target:

各种任务都面临缺少标签数据的问题:

所以,需要SSL。

但是,SSL任务可能会过多关注冗余信息:

 这样可能会使下游任务的结果不好:

 而本文设计的AD-GCL可以避免GCN捕捉过多冗余信息:

而要实现这个目的则是通过设计的图增强策略: 

 此外,这篇文章还有理论分析:

  • 这个是作者原文,可以get到作者的出发点:

普渡大学李攀:好的图表示到底是什么?|向量|鲁棒性|高斯_网易订阅

【论文阅读】AD-GCL:Adversarial Graph Augmentation to Improve Graph Contrastive Learning_Cziun的博客-CSDN博客

由于现实世界中图形/网络数据中普遍存在的标签稀缺问题,迫切需要对图形神经网络(GNN)进行自监督学习。图控制学习(Graphcontrastive learning,GCL),通过训练GNN使同一个图的不同扩充形式的表示之间的对应关系最大化。甚至在不使用标签的情况下,也可能产生健壮且可转移的GNN。然而,由传统GCL训练的GNN通常有捕获冗余图形特征的风险,并且这些特征可能很脆弱,在下游任务中的性能低于标准。在这里,我们提出了一种新的原则,称为对抗性gcl(AD-gcl),该原则通过优化gcl中使用的对抗图增强策略,使SGNNS能够避免在训练期间捕获冗余信息。我们将AD-GCL与理论解释结合起来,设计了一个基于可训练边缘下降图扩充的实例。我们通过实验验证了AD!通过与最先进的GCL方法进行比较,在无监督学习、转移学习、半监督学习、属性回归和分类以及社交网络分类方面,实现了高达14%、6%和3%的性能增益,共有18个不同的基准数据集,用于分子属性回归和分类以及社交网络分类任务

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值