torch.nn.functional.normalize:
- 功能:将某一个维度除以那个维度对应的范数(默认是2范数)。
- 公式:
积累技巧:dim到底是第几维:
- Tensor的形式:
tensor([[[0.2425, 0.3714, 0.4472],
[0.9701, 0.9285, 0.8944]],
[[0.2425, 0.3714, 0.4472],
[0.9701, 0.9285, 0.8944]]])
- dim=2: 碰到的第三个括号 :行
- dim=1: 碰到的第二个括号:列
- dim=0: 碰到的第一个括号:不知如何表述
一维:输入为一维Tensor
- 可以看到每一个数字都除以了这个
Tensor
的范数:
a = torch.Tensor([1,2,3])
torch.nn.functional.normalize(a, dim=0)
tensor([0.2673, 0.5345, 0.8018])
二维:输入为二维Tensor
- 因为
dim=0
,所以是对列操作。以第一列为例,整体除以了第一列的范数:
b = torch.Tensor([[1,2,3], [4,5,6]])
torch.nn.functional.normalize(b, dim=0)
tensor([[0.2425, 0.3714, 0.4472],
[0.9701, 0.9285, 0.8944]])
- 因为
dim=1
,所以是对行操作。以第一行为例,整体除以了第一行的范数:
b = torch.Tensor([[1,2,3], [4,5,6]])
torch.nn.functional.normalize(b, dim=1)
tensor([[0.2673, 0.5345, 0.8018],
[0.4558, 0.5698, 0.6838]])
三维:输入为三维Tensor
- 注意此时
dim=2
,所以是对第三个维度,也就是每一行操作。以第一行为例,除以了第一行的范数:
b = torch.Tensor([[[1,2,3], [4,5,6]], [[1,2,3], [4,5,6]]])
torch.nn.functional.normalize(b, dim=2)
tensor([[[0.2673, 0.5345, 0.8018],
[0.4558, 0.5698, 0.6838]],
[[0.2673, 0.5345, 0.8018],
[0.4558, 0.5698, 0.6838]]])
- 注意此时
dim=1
,所以是对第二个维度操作。第二个维度是二维数组,所以此时相当于对二维数组的第0维操作。
以[[1,2,3], [4,5,6]]
为例,此时要对它的列操作。第一列要除以这一列的范数:
b = torch.Tensor([[[1,2,3], [4,5,6]], [[1,2,3], [4,5,6]]])
torch.nn.functional.normalize(b, dim=1)
tensor([[[0.2425, 0.3714, 0.4472],
[0.9701, 0.9285, 0.8944]],
[[0.2425, 0.3714, 0.4472],
[0.9701, 0.9285, 0.8944]]])
参考博文:https://blog.csdn.net/ECNU_LZJ/article/details/103653133