multi-head attention:
-
单个attention输入后,对应有三个权重矩阵
-
multi-head输入后,如果有l个头,就有l×3个参数矩阵
-
multi-head输出的向量会串联起来,变长
-
不只是attention,self—attention也有多头
transformer的encoder:
-
transformer的encoder的一层结构:multi—head attention+dense+全连接层
-
可以多累几层
-
transformer的encoder对于上述结构,一共使用了6层
transformer的decoder:
-
在decoder底层先是一个multi-head
-
然后,encoder,decoder合起来multi-head
-
最后:+dense+全连接层
-
输入和输出的大小是对等的:
-
当然,以上结构也是decoder的一个block
-
相应地,一共有6个block
-
其实,RNN和transformer的模型输入和输出都是一样的,可以拿过来直接用
-
encoder的大小
-
decoder的大小
-
transformer是一个seq2seq模型
-
它不是RNN,没有循环结构
-
它只是基于attention和self-attention
-
它在机器翻译领域完暴RNN
参考视频:https://www.bilibili.com/video/BV1Ap4y1Q7nT