注意力机制----Multi-Head Attention 和 transformer

multi-head attention:

  • 单个attention输入后,对应有三个权重矩阵

  • multi-head输入后,如果有l个头,就有l×3个参数矩阵

  • multi-head输出的向量会串联起来,变长

  • 不只是attention,self—attention也有多头

 







 

transformer的encoder: 

  • transformer的encoder的一层结构:multi—head attention+dense+全连接层

  • 可以多累几层

  • transformer的encoder对于上述结构,一共使用了6层







transformer的decoder:

  • 在decoder底层先是一个multi-head

  • 然后,encoder,decoder合起来multi-head

  • 最后:+dense+全连接层

  • 输入和输出的大小是对等的:

  • 当然,以上结构也是decoder的一个block

  • 相应地,一共有6个block

  • 其实,RNN和transformer的模型输入和输出都是一样的,可以拿过来直接用




 


 


 


 


 

  • encoder的大小

  • decoder的大小

  • transformer是一个seq2seq模型

  • 它不是RNN,没有循环结构

  • 它只是基于attention和self-attention

  • 它在机器翻译领域完暴RNN

 

 

 

参考视频:https://www.bilibili.com/video/BV1Ap4y1Q7nT

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值