2021 (ICKD) Exploring Inter-Channel Correlation for Diversity-preserved Knowledge

ICKD是一种新的知识蒸馏方法,关注于特征的通道间相关性。它让学生网络模仿教师网络的特征空间多样性与同源性,通过计算和利用通道相关性矩阵。这种方法适用于图像分类和图像分割任务,通过调整损失函数来平衡同源性和多样性。实验表明,ICKD能有效提高学生网络的性能,特别是在教师网络和学生网络能力不完全匹配的情况下。
摘要由CSDN通过智能技术生成

发布平台:ICCV 2021

论文链接:https://arxiv.org/abs/2202.03680

代码链接:https://github.com/ADLab-AutoDrive/ICKD

创新点

此前的方法忽略了保留特征的通道间相关性的重要作用,导致在教师网络中缺乏捕捉特征空间的内在分布特征的足够的多样性特征

由于学习能力的差异,不能强迫学生模型教师的整个特征图。本文让学生网络模仿从教师那里学来的通道间的相关性。

提出知识提取通道间相关方法(ICKD),该方法可以使学生网络特征空间多样性同源性与教师网络的多样性与同源性相一致。如果这两个通道之间的相关性彼此无关,被解释为多样性,否则是同源性。

图像分类

在这里插入图片描述
红色框表示信道在感知和数学上是同源的(如,内积),橙色框表示信道是多样的。可视化的特征图显示网络中的特征多样性与同源性共存。

在这里插入图片描述

计算相关性

在这里插入图片描述
其中在这里插入图片描述表示特征在这里插入图片描述的第m个通道,在这里插入图片描述将一个二维特征映射向量为一个长度为在这里插入图片描述的向量,在这里插入图片描述是一个度量输入对相关性的函数,其中使用内积

矩阵乘法的方式重写上述公式,ICC矩阵计算如下:
在这里插入图片描述
其中在这里插入图片描述使空间维度变平。无论空间维度在这里插入图片描述在这里插入图片描述如何,所得到的在这里插入图片描述矩阵的大小都为在这里插入图片描述
在学生的特征上添加线性变换层在这里插入图片描述
在这里插入图片描述
由1x1的卷积层和一个没有激活函数的BN层组成。当学生网络输出维数与教师网络不匹配时,在这里插入图片描述可以适应在这里插入图片描述来匹配在这里插入图片描述的输出维数c。

损失函数

在这里插入图片描述
在这里插入图片描述
其中在这里插入图片描述为交叉熵损失,在这里插入图片描述在这里插入图片描述为权重因子。

图像分割

在这里插入图片描述

网络级通道相关性

将特征在这里插入图片描述沿像素位置均匀划分为在这里插入图片描述个部分,用在这里插入图片描述在这里插入图片描述在这里插入图片描述表示。每个部分的尺寸是在这里插入图片描述,其中在这里插入图片描述在这里插入图片描述。每个部分的在这里插入图片描述矩阵单独计算,然后聚合所有的在这里插入图片描述矩阵。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

损失函数

在这里插入图片描述

备注

1.对于图像分类,使用全局平均池化之前的特征图进行蒸馏。根据经验设置了等式中在这里插入图片描述在这里插入图片描述
的权重因子分别是5到1和2.5。
2.如果学生的学习能力不匹配,他们可能无法赶上老师。
3.一个假设是,老师越好我们的学生就越好,这个假设几乎是合理的,但已被证明是不实际的,因为学生可能无法赶上老师。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值