et 大脑接口
重点 (Top highlight)
What would it be like to control everything around you just by the sense of thought? Imagine controlling a drone not by a physical controller but instead by the waves emitted from your brain. How cool would that be?
仅凭思想就可以控制周围的一切,这是什么感觉? 想象一下,不是通过物理控制器而是通过大脑发出的波来控制无人机。 那有多酷?
And what if I told you there are prototypes for such brain-controlled drones currently in existence and that few years down the line you could own one. Alright! Let’s talk about the Brain Computer Interface!
如果我告诉你,现在已经有这种大脑控制的无人机的原型,那么几年后你就可以拥有这种无人机了。 好的! 让我们谈谈大脑计算机接口!
The start of BCI or Brain Computer Interface was linked to Richard Canton’s discovery of electrical signals in 1875. However, it was with Hans Berger’s discovery of the electroencephalogram(EEG) in the 1920s that the discussions if even something like this would be possible started. In the 1970s, UCLA began to research brain mapping and information extraction, and that’s when the Brain-Computer-Interface expression emerged as a field.
BCI或脑计算机接口的出现与1875年理查德·坎顿(Richard Canton)的电信号发现有关。然而,正是由于汉斯·伯格(Hans Berger)在1920年代发现脑电图(EEG),才开始讨论甚至是可能的事情。 1970年代,加州大学洛杉矶分校(UCLA)开始研究大脑作图和信息提取,而那时脑机接口的表达应运而生。
什么是大脑计算机接口? (What is a Brain Computer Interface?)
In simple terms, it is a communication interface between the brain and an external device, your brain speaks, and the machine responds. It can also be a bidirectional communication pathway where the machine can pass on the information to the brain known as active BCI.
简单来说,它是大脑与外部设备之间的通信接口,您的大脑会说话,机器会做出响应。 它也可以是双向通信路径,机器可以将信息传递到大脑, 称为主动BCI 。
What information are we talking about here? It is the information on the electrical activity of the brain from the surface of the scalp. Electrodes are placed on the scalp to pick up the electric potentials generated by the brain, and this information is sent to the machine, this is Passive BCI. In Active BCI, the machine sends signals understandable by the brain, usually by an invasive technique.
我们在这里谈论什么信息? 它是有关头皮表面的大脑电活动的信息。 将电极放在头皮上以拾取大脑产生的电势,并将此信息发送到机器,这就是被动BCI。 在Active BCI中,机器通常通过一种侵入性技术发送大脑可理解的信号。
For example, in Passive BCI, you can think of moving left, and this thought to move left is sent to the computer by an intermediate brain mapping device that detects the change in electric potentials at various locations on the scalp and sends this information. The computer can then run algorithms to decode this thought of moving left and voila, you can use this to control a car in a game. Yes, it does sound very futuristic, and yes, it is.
例如,在Passive BCI中,您可以想到向左移动,并且这种向左移动的想法通过中间的大脑测绘设备发送到计算机,该设备将检测头皮上各个位置的电势变化并发送此信息。 然后,计算机可以运行算法来解码这种向左移动和瞧的想法,您可以使用它来控制游戏中的汽车。 是的,听起来确实很未来,是的。
是什么使BCI成为可能? (What makes BCI possible?)
Two factors are primarily responsible for the possibility of BCI. First is the behavior of our brain, and the second is the Advancement in technology.
BCI的可能性主要由两个因素造成。 首先是我们大脑的行为,其次是技术的进步。
1.固有的大脑功能 (1. The inherent brain functioning)
The functioning of our brain is quite fascinating. The brain is filled up with neurons, and whenever we think of something, these neurons are at work, transferring information from one part of the body to the other in the form of electrical signals. These signals can sometimes travel with speeds of 150m/s. The paths the signals take are mostly insulated, but some signals do escape. It is these signals that we try to read using a BCI device and decode them.
我们大脑的功能十分迷人。 大脑充满了神经元,每当我们想到某些东西时,这些神经元便开始工作,以电信号的形式将信息从身体的一部分传递到另一部分。 这些信号有时可以150m / s的速度传播。 信号所经过的路径大部分是绝缘的,但有些信号确实会逸出。 我们尝试使用BCI设备读取并解码这些信号。
There are electrodes placed at a few standard locations around the brain, as shown in the image above, and these electrodes then catch the micro-voltage differences going on around the outer portion of our brain. The number of locations for the electrodes to be placed for exploiting brain wave information varies from task to task. Some might require signals from all parts of the brain, while for other tasks, the signal from one or two lobes is sufficient.
如上图所示,在大脑周围的几个标准位置放置了电极,然后这些电极捕获了在大脑外部周围发生的微电压差。 用于放置脑电波信息的电极的位置数量因任务而异。 有些可能需要来自大脑各个部位的信号,而对于其他任务,来自一个或两个瓣的信号就足够了。
2.计算技术的飞速发展 (2. Rapid Advancement in computation techniques)
The first-ever EEG(Electroencephalography) signal was recorded way back in 1924. Researchers started their discussions on the possibility of a Brain Computer Interface in the 1970s. However, the breakthroughs were seen happening in the late 2000s.
最早的EEG(脑电图)信号是在1924年记录的。研究人员在1970年代开始讨论脑计算机接口的可能性。 然而,看到突破发生在2000年代后期。
People had the techniques ready by the 1980s but were limited by the compute power available to them. The Y2K revolution and other discoveries that followed blessed the research community with low cost, high power machines capable of performing complex computations. Techniques such as Machine Learning started taking a practical shape, and now the algorithms proved theoretically could be tested.
人们在1980年代就已经准备好了这些技术,但是受到他们可用的计算能力的限制。 随之而来的Y2K革命和其他发现为研究界提供了能够执行复杂计算的低成本,高功率机器。 诸如机器学习之类的技术开始形成实用形式,现在该算法在理论上已被证明可以进行测试。
For brain-computer interfaces especially, where there’s a significant need for classification of different signal types, advances in Machine Learning techniques proved to be a significant driving force for the success of BCI as a research field.
特别是对于非常需要对不同信号类型进行分类的脑机接口,机器学习技术的进步被证明是BCI作为研究领域成功的重要推动力。
当前场景 (Current Scenario)
Brain-computer interface (BCI) technology has been studied with the fundamental goal of helping disabled people communicate with the outside world using brain signals. In particular, a large body of research has been reported in the electroencephalography (EEG)-based BCI research field during recent years. The video below gives a good idea of the possibilities with BCI in today’s world.
已经研究了脑机接口(BCI)技术,其基本目标是帮助残疾人使用脑信号与外界进行交流。 特别是,近年来,基于脑电图(EEG)的BCI研究领域已进行了大量研究。 下面的视频很好地说明了BCI在当今世界中的可能性。
BCI research has provided an avant-garde approach to reach the goal of Unmanned Aerial Vehicle Remote Control using the brain, and that is phenomenal. Deep Learning has undoubtedly accelerated the progress in BCI, and today, Deep Learning-based Brain Computer Interface is a field in itself.
BCI研究提供了一种前卫的方法来达到使用大脑进行无人飞行器远程控制的目标,这是惊人的。 深度学习无疑加速了BCI的发展,如今,基于深度学习的脑计算机接口本身就是一个领域。
It’s mindboggling to see how close we get each day in understanding how the most complicated thing ever known, the human brain, functions. The possibilities of BCI technology are nowhere near exhausted. Soon, you can expect playing games solely controlled with your brain, and well, this might give a whole new definition to the term ‘multitasking.’
令人难以置信的是,我们每天都在了解人类所知的最复杂的事物如何运作方面有多近。 BCI技术的可能性远未耗尽。 很快,您可以期望玩完全由大脑控制的游戏,而且,这可能给“多任务”一词带来全新的定义。
BCI的未来 (Future with BCI)
I personally, as a tech enthusiast, can’t wait to see how BCI will positively impact our lives. The technology could build up a whole new dimension in the field of medicine. A study at Stanford University showed why BCI technology would continue to grow in relevance to medicine. The study brings out the application of BCI technology to three paralytic patients (two with ALS and one with a spinal cord injury).
作为技术爱好者,我个人迫不及待地想看看BCI将如何积极影响我们的生活。 该技术可以在医学领域建立一个全新的维度。 斯坦福大学的一项研究表明,为什么BCI技术将继续与医学相关地发展。 该研究将BCI技术应用于三名瘫痪患者(两名患有ALS,一名患有脊髓损伤)。
In the study, these patients could successfully move an on-screen cursor by imagining the necessary hand movements. Isn’t it indeed a techno-marvel. Non-invasive BCI, which is BCI without any implants, is undoubtedly something to look out for in the near future. Non-invasive BCI products can be expected to be seen in the mainstream market within a few years.
在这项研究中,这些患者可以通过想象必要的手部动作来成功地移动屏幕上的光标。 确实不是一个技术奇迹。 无创BCI,即没有植入物的BCI,无疑是在不久的将来值得期待的东西。 非侵入性BCI产品有望在几年内出现在主流市场中。
The breakthroughs around more efficient methods of acquiring brain signals with non-invasive EEG devices are indicative of our future with BCI.
使用非侵入性EEG设备获取脑信号的更有效方法的突破,标志着我们BCI的未来。
“Everything we do, every thought we’ve ever had, is produced by the human brain. But exactly how it operates remains one of the biggest unsolved mysteries, and it seems the more we probe its secrets, the more surprises we find. “
“我们所做的一切,我们曾经做过的每件事,都是人类的大脑产生的。 但是它的确切运行方式仍然是最大的未解之谜之一,似乎我们越探索它的秘密,就会发现更多的惊喜。 “
Neil deGrasse Tyson
尼尔·德格拉斯·泰森
进一步阅读: (Further readings:)
Forbes list on 10 Companies Working On Reading Your Thoughts
TED | How to control someone else’s arm with your brain | Greg Gage
Also, Check out
另外,退房
I hope you loved it! See you soon :)
我希望你喜欢它! 再见 :)
翻译自: https://medium.com/swlh/heard-about-brain-computer-interfaces-22bfb82388f
et 大脑接口