深度学习病理图像分割_组织病理学的深度学习

这篇博客探讨了深度学习如何应用于病理图像分割,详细介绍了相关技术在组织病理学中的实践,阐述了使用深度学习模型如TensorFlow进行图像处理的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习病理图像分割

计算机视觉/深度学习/医学影像 (Computer Vision/ Deep Learning/ Medical Imaging)

Histopathology is the study of diseases of tissues that involves the examination of microscopic slides consisting of tissues, cells, etc, that has been extensively used for the diagnosis of various forms of cancer. Histopathologists are medical experts who analyze cells or tissues under the microscope to make a diagnosis in order to come to a consensus regarding nature, the severity of diseases, and plan of action with regards to patient care. With the advent of advanced equipment such as specialized scanning machines, strides in storage/cloud capabilities, it has now become quite easy to store Microscopic glass slides in the form of Digital slides on a computer for processing them. It has enabled remote diagnosis, faster analysis, and systematic and safe storage of pathology information. Recent events such as the global pandemic have shown us the importance of automating medical activities such as diagnostics. Not only will it help improve the accuracy and capacity, removing a lot of redundancy, but it will ensure less exposure for the Doctors and diagnosticians on the frontline.

组织病理学是对组织疾病的研究,涉及检查由组织,细胞等组成的微观载玻片,该载玻片已广泛用于诊断各种形式的癌症。 组织病理学家是医学专家,他们在显微镜下分析细胞或组织以做出诊断,以便就自然,疾病的严重程度以及有关患者护理的行动计划达成共识。 随着诸如专用扫描机之类的先进设备的出现,存储/云功能的飞跃发展,现在已经非常容易以数字载玻片的形式将显微载玻片存储在计算机上进行处理。 它实现了远程诊断,更快的分析以及病理信息的系统和安全存储。 最近的事件(例如全球大流行)向我们表明了自动化医疗活动(如诊断程序)的重要性。 它不仅有助于提高准确性和容量,消除大量冗余,而且可以确保减少对一线医生和诊断人员的影响。

Due to the rising applicability, scalability, and success of Artificial Intelligence and Machine Learning and its multidisciplinary nature, it is increasingly being applied to various fields. Medical Science is no different. A large number of procedures from Automated diagnosis to surgical procedures to drug discovery are leveraging Machine learning with promising results. Medical imaging for diagnosis using Machine Learning and Classical computer vision is a very fastly growing area of research.Deep Learning, especially CNNs has become the methodology of choice when it comes to digital histopathology. This blog is a summarised review of the current state of research, the best practices, and the challenges in the field of Deep Learning for Histopathology. The review is structured based on the different deep learning approaches and discusses some of the popular, state of the art papers.

由于人工智能和机器学习的适用性,可伸缩性以及成功的不断发展以及其多学科的性质,它正越来越多地应用于各个领域。 医学也是如此。 从自动化诊断到外科手术再到药物发现的大量程序正在利用机器学习取得可喜的结果。 使用机器学习和经典计算机视觉进行诊断的医学成像是一个快速发展的研究领域。深度学习,尤其是CNN,已成为数字组织病理学的首选方法。 该博客是对当前研究状态,最佳实践以及组织病理学深度学习领域挑战的总结。 审查是根据不同的深度学习方法构建的,并讨论了一些流行的最新技术论文。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值