深度学习在计算机视觉应用_形成计算机视觉以深度学习工业应用创新的人工智能路径...

深度学习在计算机视觉应用

In the race to enable manufacturing plants to increase production in the face of an intermittent human workforce, manufacturers are looking at how to supplement their cameras with AI to give human inspectors the ability to spot defective products immediately and correct the problem.

为了使制造工厂面对不断变化的人工劳动力能够提高产量,制造商正在研究如何用AI补充其相机,以使检查人员能够立即发现有缺陷的产品并纠正问题。

While machine vision has been around for more than 60 years, the recent surge in the popularity of deep learning has elevated this sometimes misunderstood technology to the attention of major manufacturers globally. As CEO of a deep learning software company, I’ve seen how deep learning is a natural next step from machine vision, and has the potential to drive innovation for manufacturers.

虽然机器视觉已经存在了60多年,但是最近深度学习的普及激增了这种有时被误解的技术,引起了全球主要制造商的关注。 作为一家深度学习软件公司的首席执行官,我已经看到深度学习是机器视觉自然而然的下一步,并且具有推动制造商创新的潜力。

How does deep learning differ from machine vision, and how can manufacturers leverage this natural evolution of camera technology to cope with real-world demands?

深度学习与机器视觉有何不同?制造商如何利用相机技术的自然发展来满足现实世界的需求?

Machine Vision: When Simple Is Just Too Simple

机器视觉:简单到极简

In the 1960s, several groups of scientists, many of them in the Boston area, set forth to solve “the machine vision problem.” The approach was simple but powerful: Scientists proposed a framework where machine vision systems were characterized by two steps.

在1960年代,几批科学家(其中许多在波士顿地区)着手解决“机器视觉问题”。 该方法简单但功能强大:科学家提出了一个框架,其中机器视觉系统分为两个步骤。

In the first, the scientist decides which simple features — edges, curves, color patches, corners and other salient key points in images — are important for an image. In the second, they devise a classifier, usually hand-tuning several “thresholds” (for instance, how much “red” and “curvature” classify an object as a “red apple”) that automatically weighs these features and decides to which object they belong. While this approach was nowhere near a complete characterization of the power of human vision, it was simple and effective enough to survive for 50 years virtually unchanged.

首先,科学家确定图像中哪些简单的特征(边缘,曲线,色块,角和其他显着的关键点)很重要。 在第二种方法中,他们设计了一个分类器,通常手动调整几个“阈值”(例如,多少“红色”和“曲率”将一个对象分类为“红色苹果”),从而自动权衡这些特征并决定将哪个对象分类他们属于。 尽管这种方法远不能完全表征人类视觉的力量,但它简单有效,足以在不改变的情况下生存50年。

In this original form, it enabled a plethora of real-world applications, and became a critical part of manufacturing applications, powering quality control deployments ever since.

以这种原始形式,它启用了许多实际应用程序,并成为制造应用程序的关键部分,此后一直为质量控制部署提供动力。

In a visual inspection example, a machine vision system may be deployed to search for defects in an image of a product. The first step will usually sample images of the product by computing contrast, edges, colors and other features, as they may be indicative of defects in the object. The classifier — the second step — will be hand-tuned by the quality inspector to determine if the product has enough “suspicious features” to make a final determination of damage.

在视觉检查示例中,可以部署机器视觉系统以搜索产品图像中的缺陷。 第一步通常将通过计算对比度,边缘,颜色和其他特征来采样产品的图像,因为它们可能表示物体中的缺陷。 分类器(第二步骤)将由质量检查人员手动调整,以确定产品是否具有足够的“可疑特征”以最终确定损坏。

This approach is simple and powerful in some cases, yet quite ineffective in many others, as it fails in situations where the difference between good product attributes and defects are highly qualitative, subtle and variable. Yet this is the nature of the world we live in.

这种方法在某些情况下简单而有效,而在其他许多情况下却非常无效,因为在良好的产品属性和缺陷之间的差异在定性,微妙和可变的情况下失败。 但这就是我们生活的世界的本质。

Machine vision’s answer: Create more features and thresholds with a steady climb to higher complexity that makes these systems extremely complicated to tune even for the most experienced engineer and operators.

机器视觉的答案:创建更多的功能和阈值,并不断提高到更高的复杂性,这使得即使对于最有经验的工程师和操作员来说,这些系统的调试也极其复杂。

The Path To Deep Learning: Shifting Intelligence From Human To Software

深度学习之路:将智慧从人性转移到软件

Image for post
Piqsel Piqsel提供

In the ’80s, while machine vision was all the rage, a small subset of scientists interested in bridging the gap between biological systems and machines started to tinker with the idea of mimicking neurons and their architecture in the brain’s visual system. The goal was to better understand how we perceive, and along the way, design machines that “see” better.

在80年代,机器视觉风靡一时,一小部分对弥合生物系统与机器之间的鸿沟感兴趣的科学家开始尝试在大脑的视觉系统中模仿神经元及其结构。 目的是更好地了解我们如何看待并设计出更好“看”的机器。

During those years, the precursors of today’s deep learning models were developed. The key: self-organization. Importantly, these models and later deep learning cousins did not rely on the two hand-tuned steps of traditional machine vision. Instead, they shifted the burden on finding (learning) those features and thresholds from the scientist to the deep learning model. Scientists still had to use their brains to devise equations that enabled this generalized learning directly from the data, but now it only had to be done once.

在那些年中,开发了当今深度学习模型的前身。 关键:自我组织。 重要的是,这些模型和后来的深度学习表亲并不依赖传统机器视觉的两个手动调整步骤。 相反,他们将寻找(学习)这些特征和阈值的负担从科学家转移到了深度学习模型。 科学家们仍然不得不动脑筋设计方程式,以直接从数据中进行这种广义的学习,但是现在只需要做一次。

This is really the key to deep learning: One does not need to handcraft a machine vision model for every case, but rather devise a learning machine that can be taught virtually anything directly from data, whether to classify fruits, airplanes or products in a machine.

这确实是深度学习的关键无需为每种情况手工构建机器视觉模型,而是设计一种可以直接从数据中学习几乎任何东西的学习机器,无论是对水果,飞机还是对机器中的产品进行分类。

Deep Inspections: Bringing The Power And Flexibility Of AI To Every Manufacturing Camera

深度检查:为每台制造相机都带来AI的强大功能和灵活性

In the machine vision-dominated world of quality control, deep learning represents a vital innovation, in particular in times where more and more needs to be done with fewer people.

在以机器视觉为主导的质量控制世界中,深度学习代表着一项至关重要的创新,尤其是在越来越需要用更少的人来完成的时代。

With machines able to produce extremely variable, always-changing products at rates that can easily surpass 60 items per minute, deep learning is changing the machine vision landscape, especially with products that incorporate edge learning (or ability to learn directly in the camera/machines).

机器能够以每分钟轻松超过60件的速度生产出变化很大,经常变化的产品,深度学习正在改变机器视觉的格局,尤其是结合边缘学习(或直接在相机/机器中学习的能力)的产品)。

Deep learning running at edge nodes in machines today enables dozens of cameras to learn new item types and defects in a variable production environment where new items are constantly introduced, and new, previously unseen defects show up on the line. Machine vision could not tackle this task — there are too many specialized, hand-tuned features and thresholds, each product coming with its own very complicated set of requirements. Deep learning brings down the cost and time to optimize quality inspection to a level that makes it technically and economically feasible for manufacturers of all kinds.

如今,在机器边缘节点上运行的深度学习使数十台摄像机能够在不断引入新项目的可变生产环境中学习新项目类型和缺陷,并且在线上会出现以前看不见的新缺陷。 机器视觉无法解决这一任务-太多的手动调整的专业功能和阈值,每个产品都有其非常复杂的要求。 深度学习将优化质量检查的成本和时间降低到一定水平,从而使各种制造商在技术和经济上都可行。

Deep learning is a paradigm-shifting technology that is powering a clear path to the Industry 4.0 revolution by shifting intelligence from the engineer and quality inspector to a piece of software continuously operating at compute edge where it is needed, at speeds, latency and costs that make it possible to efficiently achieve 100% inspection.

深度学习是一种范式转移技术,它通过将智能从工程师和质量检查员转移到持续在需要的计算边缘上以一定速度,延迟和成本运行的软件,为工业4.0革命提供了一条清晰的道路。使有效地实现100%检查成为可能。

While machine vision has served its purpose, deep learning-enabled cameras will bring innovation to a sector that has never been more in need of breakthroughs.

虽然机器视觉已达到其目的,但具有深度学习功能的相机将为从未需要突破的行业带来创新。

翻译自: https://towardsdatascience.com/form-computer-vision-to-deep-learning-the-ai-path-to-innovation-in-industrial-applications-b132eef8803a

深度学习在计算机视觉应用

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值