ai时代大学生的机遇和挑战
Last October was something of a watershed moment for contemporary generative art with the first sale by auction of a portrait generated with the help of artificial intelligence (AI) for $432,500, titled “Portrait of Edmond Belamy.” The event garnered a huge level of public interest and received widespread media coverage across several major outlets, including The New York Times, The Washington Post and the Miami Herald, and from leading online Art news platforms Artsy and Artnet, among others. Aside from the final sale price greatly exceeding the original estimated sale price of $10,000, one of the most interesting aspects of this episode was how it was characterized by the media at large.
去年十月是当代产生艺术的分水岭,在人工智能(AI)的帮助下,第一幅肖像画的拍卖会以432,500美元的价格售出,题为“埃德蒙·贝拉米的肖像”。 这项活动引起了广泛的公众关注,并在包括《纽约时报》,《华盛顿邮报》和《迈阿密先驱报》在内的几个主要媒体以及领先的在线艺术新闻平台Artsy和Artnet等媒体上获得了广泛的媒体报道。 除了最终的售价大大超过最初的估计售价10,000美元之外,这一集最有趣的方面之一就是整个媒体的特点。
The headline from Artsy claimed that the portrait was “generated by artificial intelligence,” a view perfectly consistent with the NY Times of a “portrait produced by artificial intelligence.” Prior to the actual sale, Artnet had posed the question, “Is the art market ready to embrace work made by artificial intelligence?” Christie’s, the auction house who offered the artwork, asked whether artificial intelligence is set to become art’s next medium.
Artsy的标题声称该肖像是“由人工智能产生的”,这一观点与《 纽约时报》关于“由人工智能产生的肖像”的观点完全一致。 在实际出售之前, Artnet提出了一个问题:“艺术品市场是否准备好接受人工智能所做的工作?” 提供艺术品的拍卖行佳士得拍卖行(Christie's) 询问,人工智能是否将成为艺术品的下一个媒介。
Framing the story in this way — that artificial intelligence was responsible for a fictitious portrait that fetched a handsome sum on the market — is arresting and creates the impression that the portrait was developed without human involvement. It also runs counter to the idea that art is, in essence, a medium for human expression; a highly creative and engaging way for human beings to express themselves, their experiences and how they perceive the world around them. Most importantly, however, such characterizations are fundamentally misleading. The notion that intelligent machines are the sole authors of the art they produce, with little or no human interaction, isn’t an accurate portrayal of how art is generated using AI. In this article, we seek to explore and clarify the process of creating generative art using AI techniques.
以这种方式来构筑故事-人工智能负责虚构肖像并在市场上获得可观的一笔收入-令人震惊,并给人留下这样的印象,即肖像是在没有人类参与的情况下开发的。 这也与艺术在本质上是人类表达的媒介这一观点背道而驰。 这是人类表达自己,经历以及如何感知周围世界的极富创造力和吸引力的方式。 然而,最重要的是,这种表征从根本上是误导的。 智能机器是他们生产的艺术的唯一作者,几乎不需要人工干预,这并不是对使用AI产生艺术的准确描绘。 在本文中,我们试图探索和阐明使用AI技术创造生成艺术的过程。
生成艺术:逐步完成创作过程 (Generative Art: Stepping Through the Creative Process)
Generative art is a classification for art created using an autonomous system such as a machine learning (ML) algorithm. AI is a large field, but, when discussed in relation art, what is usually meant is ML. In the context of generative art, ML is used as a creative tool for artists to explore and push the boundaries of existing art forms and modes of expression. Pushing known boundaries is of course something artists have always sought to do in practice. At Christie’s Art + Tech Summit past June, Mike Tyka likened ML as a creative technique to the use of a system that the artist does not fully control, such as the technique of spilling paint onto a canvas: the artists directs the process, but the final result is determined in part by the laws of physics. One might, therefore, argue that generative art using ML is simply one more manifestation of the typical trend of artists looking to probe, to experiment, to innovate in new and exciting ways.
生成艺术是使用自主系统(例如机器学习(ML)算法)创建的艺术的分类。 AI是一个广阔的领域,但是,在相关领域中进行讨论时,通常指的是ML。 在生成艺术的背景下,机器学习被用作艺术家的创新工具,以探索并突破现有艺术形式和表达方式的界限。 当然,突破已知界限是艺术家在实践中一直试图做的事情。 在6月的佳士得(Christie)艺术与技术峰会上 ,迈克·泰卡(Mike Tyka)将ML视为一种创造性技术,使用了艺术家无法完全控制的系统,例如将颜料洒到画布上的技术:艺术家指导过程,但最终结果部分取决于物理定律。 因此,有人可能会认为,使用ML进行艺术创作只是艺术家寻求以新颖而令人兴奋的方式进行探索,试验和创新的典型趋势的又一体现。
艺术家究竟有多可能使用ML作为创作工具来创作艺术? (How Exactly Might Artists Use ML as a Creative Tool to Generate Art?)
According to one definition offered by Jason Bailey at the Art + Tech Summit, ML is models built on lots of training data used to make predictions when new data is added. These models ingest large amounts of training data, they learn from the data by finding correlations and patterns in the data to build a correlation structure, and they then leverage that correlation structure to make predictions from new data. In the context of generative art, the ML models employed in the creative process are trained on many examples of various kinds of artworks, and they make predictions in the form of new artworks generated as output.
根据Jason Bailey在Art + Tech Summit上提供的一个定义,ML是基于大量训练数据构建的模型,这些训练数据用于在添加新数据时进行预测。 这些模型吸收了大量的训练数据,它们通过在数据中查找相关性和模式以建立相关性结构来从数据中学习,然后利用该相关性结构对新数据进行预测。 在生成艺术的背景下,在创作过程中使用的ML模型在各种艺术品的许多示例上进行了训练,并且它们以生成的新艺术品作为输出进行预测。
As suggested by the press headlines covering the sale of the Portrait of Edmond Belamy, there is a tendency to see these ML models as functioning in a fully autonomous fashion, and therefore to see their final output purely as the product of “artificial intelligence,” but human agency is in fact critical to the ML process for generative art in all aspects.
正如有关出售Edmond Belamy肖像的新闻标题所暗示的那样,人们倾向于将这些ML模型视为完全自主的功能,因此最终将它们的最终输出纯粹视为“人工智能”的产物。但实际上,人的代理对于生成艺术的ML流程在各个方面都至关重要。
The artist working with the ML model selects and assembles the training data set for the model to learn from. In the specific case of the Portrait of Edmund Belamy, for example, 15,000 portraits painted between the 14 thand 20 thcentury were selected to train the underlying algorithm or model, according to Obvious, the team of researchers who worked with the model to produce the portrait.
使用ML模型的艺术家选择并组合了训练数据集以供模型学习。 例如,在Obed肖像画的特定案例中,选择了14个世纪至20世纪之间绘制的15,000幅肖像画来训练底层算法或模型, 据Obvious称 ,与该模型一起工作的研究人员团队制作了肖像画。
The artist also selects the ML model used to interpret and find correlations in the data and to learn about the visual elements that constitute good artwork. In the case of the Portrait of Edmund Belamy, the Obvious team elected to use a Generative Adversarial Network (GAN) model ( based heavily on code by AI artist Robbie Barrat), a technology around since 2015 that pits two ML algorithms against one another: one (the discriminator) is trying to detect fake artwork and one (the generator) is trying to generate images that look real, not fake. (An important aspect to note about the GAN model is that the discriminator provides a continuous feedback loop to the generator, nudging it towards more authentic looking images until the discriminator can no longer detect the generated images as being fake).
艺术家还选择了ML模型,该模型用于解释和查找数据中的相关性并了解构成优质艺术品的视觉元素。 以埃德蒙·贝拉米的肖像为例,Obvious团队选择使用Generative Adversarial Network(GAN)模型( 很大程度上基于 AI艺术家Robbie Barrat的代码 ),该技术自2015年以来一直在使用两种ML算法互相抗衡:一个(判别器)试图检测伪造的艺术品,另一个(生成器)试图产生看起来真实而不是伪造的图像。 (需要注意的有关GAN模型的一个重要方面是,鉴别器为生成器提供了一个连续的反馈回路,将其推向看起来更真实的图像,直到鉴别器不再能够将生成的图像检测为伪造为止)。
And finally, the artist selects the output generated by the ML model to be shared or published; Portrait of Edmond Belamy was in fact just one of a group of portraits of the fictional Belamy family curated by Obvious team members for display and potential sale.
最后,艺术家选择要共享或发布的ML模型生成的输出; 实际上,埃德蒙·贝拉米的肖像只是虚构的贝拉米家族肖像中的一幅,这些肖像是由Obvious团队成员策划进行展示和潜在销售的。
对比观点 (Contrasting Perspectives)
Many of us feel ambivalent about, possibly even threatened by, the impact of AI advances in various fields of human endeavor due to suspicions that humanity may be marginalized by them. These sentiments appear to hold true for some in the field of art. As Ian Bogost recently explained in The Atlantic, some deem the promise of AI for art to be a threat: “Given the general fears about robots taking human jobs, it’s understandable that some viewers would see an artificial intelligence taking over for visual artists, of all people, as a sacrificial canary.” Some traditional-minded critics may even fear that contemporary generative art heralds a brave new world in which the fundamental relationship between artist and artwork, or the connection made through the artwork between artist and viewer, is undermined, and the contextual and symbolic meaning of an artwork, derived from the human thoughts and choices of the author and the cultural influences at play, is lost.
由于怀疑人类可能将人类边缘化,因此我们许多人对人工智能在人类努力各个领域的进步感到矛盾,甚至可能受到威胁。 这些观点似乎在艺术领域中确实适用。 正如伊恩·博格斯特(Ian Bogost)最近在《大西洋 》上所作的解释,有人认为人工智能对艺术的承诺是一种威胁:“鉴于人们普遍担心机器人会从事人类工作,有些观众会看到人工智能取代了视觉艺术家,这是可以理解的。所有人,作为牺牲金丝雀。” 一些具有传统意识的批评家甚至可能担心,当代生成艺术预示着一个勇敢的新世界,在这个世界中,艺术家与艺术品之间的基本关系或艺术家与观众之间通过艺术品形成的联系被破坏,而艺术品的上下文和象征意义被削弱。源自作者的人类思想和选择以及所发挥的文化影响的艺术品丢失了。
There are good reasons however to be optimistic about the impact of AI on fine art. The central role of human agency in the ML process for generative art demonstrates that AI, rather than taking over the artist’s role, presents a great opportunity for human artists to capitalize on. And, while the use of AI techniques by human artists is a relatively new phenomenon, the use of technology by artists is a common practice historically that has led to highly positive outcomes. Fine art photography is just one example of a new form of art to have emerged from the practice of artists working with new technologies. As more of today’s artists engage with AI techniques like ML to create art, more opportunities for technology companies to support them in their endeavors will inevitably surface. Collaboration between artists and these technologies is nothing new, and, if the past is anything to go by, we should hope that the current embrace of AI as a creative tool for artists continues in earnest.
但是,有充分的理由对AI对美术的影响持乐观态度。 人类代理在生成艺术的机器学习过程中的核心作用表明,人工智能而不是取代艺术家的角色,为人类艺术家提供了一个很好的机会,可以从中受益。 而且,尽管人类艺术家使用AI技术是一种相对较新的现象,但从历史上看,艺术家使用技术是一种普遍的做法,已带来了非常积极的成果。 美术摄影只是艺术家使用新技术的实践中出现的一种新艺术形式的例子。 随着当今越来越多的艺术家使用诸如ML之类的AI技术来创作艺术,技术公司不可避免地会出现更多支持他们的机会。 艺术家与这些技术之间的协作并不是什么新鲜事物,如果过去已经过去了,我们应该希望目前继续将AI作为艺术家的创作工具。
Along with domain knowledge, DataArt has a vast expertise in harnessing AI and ML for the benefit of a wide range of business purposes, including art. If you’re looking for a technical partner to bring this expertise to your project, contact us today.
凭借领域知识,DataArt在利用AI和ML为包括艺术在内的广泛商业目的中拥有广泛的专业知识。 如果您正在寻找技术合作伙伴以将这种专业知识带入您的项目,请立即与我们联系 。
Originally published at https://blog.dataart.com.
最初发布在 https://blog.dataart.com 。
ai时代大学生的机遇和挑战