图像风格迁移是计算机视觉领域中,比较有意思的应用。风格迁移也就是:你给人工智能一张随便拍的照片,它就能帮升级成梵高风格的绘画作品。
图像风格迁移是计算机视觉领域中,比较有意思的应用。风格迁移也就是:你给人工智能一张随便拍的照片,它就能帮升级成梵高风格的绘画作品。
图像风格迁移的背后可以是深度学习——卷积神经网络的图像特征提取,比如 2016CVPR(CVPR是计算机视觉的顶级会议)论文《Image Style Transfer Using Convolutional Neural Networks》就采用卷积神经网络来进行风格迁移。
还可以是利用 GAN 网络技术风格迁移,在 2018CVPR 论文《Multi-Content GAN for Few-Shot Font Style Transfer》中,将设计师设计好的某些艺术字母风格迁移到没有出现过的字母上,避免重复设计。
GAN 网络学习第一行的 P、U、W 三个字母的艺术风格,生成其余 23 个字母的艺术风格,如上图中的最后一行。
或许现在你还不知道什么是卷积神经网络、 GAN 网络,或许还比较难理解背后技术的思想,但现在我们只需知道它是深度学习的一个技术即可。
一个应用的实现往往可以选择不同的技术,这就需要我们结合具体应用和分析应用的特点选择适宜的技术。