中国气候类型分布图_如何用30行代码构建气候图

本文翻译自Medium文章,展示了如何利用简洁的代码高效构建中国气候类型的分布地图,适合对地理信息和编程感兴趣的读者。
摘要由CSDN通过智能技术生成

中国气候类型分布图

Knowing the climate of a region / a country could be essential to study its ecosystem. Here I’m going to explain how to build that kind of map in a few lines of code!

了解一个地区/国家的气候对于研究其生态系统可能至关重要。 在这里,我将解释如何用几行代码来构建这种地图!

Even if we do not need a lot of experience to do that kind of map let’s split the work and take some minutes to speak about the dataset.

即使我们不需要大量的经验来制作这种地图,我们也要分拆工作并花一些时间来谈论数据集。

0°)数据集 (0°) Dataset)

To build a climatic map we need climate data! This is possible through Copernicus Climate Change Service (link to the website here & some wiki explication here).

要建立气候图,我们需要气候数据! 这通过哥白尼气候变化服务(网站链接,可以在这里与一些维基解释这里 )。

Quickly Copernicus Climate Change Service is a European project fund by the European Commission. But why Copernicus you might ask? Because this part of the Copernicus Program which is an Earth Observation Program dedicated to giving a scientific picture of the health of our blue dot. But still why Copernicus you might ask? Nicolaus Copernicus is at the origin of modern astronomy. Copernicus program is at the origin of full, free, and open access to space data.

哥白尼快速气候变化服务是欧盟委员会的一项欧洲项目基金。 但是您为什么会问哥白尼呢? 因为哥白尼计划的这部分是地球观测计划,致力于对我们蓝点的健康状况进行科学描绘。 但是,为什么您可能会问哥白尼呢? 哥白尼(Nicolaus Copernicus)是现代天文学的起源。 哥白尼计划起源于对空间数据的完全,免费和开放的访问。

So now let’s dive into the data. Thanks to Copernicus Climate Change Service you can easily download data. Here as we are focusing on climate data we are going to download the 2m temperature as well as rainfall. This data is built on satellite measures, in-situ data, and models. (link)

现在,让我们深入研究数据。 借助哥白尼气候变化服务,您可以轻松下载数据。 在这里,由于我们关注气候数据,我们将下载2m温度和降雨量。 此数据基于卫星测量,原位数据和模型。 ( 链接 )

Let’s download (netCDF format) the monthly reanalysis of the precipitation and the temperature from 1981 until 2019 above France. We should have 456 values for precipitation as well as temperature.

让我们下载(netCDF格式)每月从1981年到2019年法国上方的降水和温度的重新分析。 我们应该有456个降水和温度值。

I°)入门包 (I°) Starter pack)

So what do we need to work on this data?

那么我们需要处理这些数据吗?

One conda virtual environment design for geodata science with the following libraries :

一种具有以下库的地理数据科学conda虚拟环境设计:

  • NumPy (basic array management library) [link],

    NumPy (基本数组管理库)[ 链接 ],

  • matplotlib (basic visualization management library) [link],

    matplotlib (基本可视化管理库)[ 链接 ],

  • pandas (used to manage data) [link],

    熊猫 (用于管理数据) [

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值