diy计算机集群_建立一台DIY超级计算机!

本文介绍了如何构建一台DIY超级计算机,从概念到实践,涵盖了所需的技术知识和步骤,包括利用Python、Java等编程语言,结合大数据处理和Linux操作系统,以实现高性能计算能力,为人工智能等领域的研究提供强大支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

diy计算机集群

Ok, so perhaps ‘Supercomputer’ is a bit grand, but by the end of this three-part series, you’ll have the knowledge required to build your very own home parallel computing cluster using widely-available materials. And the best part is that, not only is it inexpensive to run (thanks to the ARM-based architecture), but the whole project will cost you less than £400, plus a day or two of your time.

ØK,所以也许“超级”是有点隆重,而是由这三部分组成的系列的结束,你就必须建立使用广泛应用的材料,你自己的家并行计算集群所需的知识。 最好的部分是,不仅运行成本低廉(由于基于ARM的体系结构),而且整个项目的成本不到400英镑,还需要一两天的时间。

1.为什么? (1. WHY?)

The chances are that if you’ve read this far, you already understand the potential use cases and benefits. But just in case, I’ll first outline my own reasons for undertaking this project.

如果您已经读了那么多的机会,那么您已经了解潜在的用例和好处。 但是以防万一,我将首先概述我从事该项目的原因。

Once upon a time, I was a PhD student in computational geophysics. Shortly after (upon a time), I left to pursue an entirely unrelated, nontechnical business opportunity… before ultimately deciding that I missed the challenge and thrill of research. As a result, I’ve dedicated the greater part of the last year to doing everything I can to improve my programming and data science skills. In doing so, I have reinitiated relationships with contacts in the academic world, and have recently entered into some informal research collaborations.

从前,我是计算地球物理学的博士生。 不久之后(一次),我离开去寻求一个完全无关的,非技术性的商业机会……然后最终决定我错过了研究的挑战和刺激。 结果,我在去年的大部分时间里竭尽所能来提高自己的编程和数据科学技能。 为此,我重新建立了与学术界联系人的关系,并且最近参加了一些非正式的研究合作。

1a。 计算需求 (1a. Computational Need)

My role in these collaborations involves processing large geospatial datasets in a variety of ways, before applying some machine learning analyses. Unfortunately, since I’m not currently an official member of any research institution, my only computational tool is my laptop. While it’s certainly possible to perform most of these analyses on my laptop, it can take many hours at a time in some cases, during which the CPU load is consistently high.

在这些合作中,我的角色涉及在应用一些机器学习分析之前,以多种方式处理大型地理空间数据集。 不幸的是,由于我目前不是任何研究机构的正式成员,所以我唯一的计算工具是笔记本电脑。 虽然当然可以在笔记本电脑上执行大多数这些分析,但在某些情况下一次可能要花费很多小时,在此期间CPU负载一直很高。

Of course, building your own home cluster is not the only solution for data science enthusiasts with relatively demanding computational requirements: there are numerous cloud computing options that could accomplish a similar feat, and perhaps even less expensively (depending on your requirements). But computational need is not my only reason…

当然,对于具有相对苛刻的计算要求的数据科学爱好者来说,构建自己的家庭集群并不是唯一的解决方案:有许多种云计算选项可以实现相似的壮举,而且成本甚至更低(取决于您的要求)。 但是计算需求并不是我唯一的理由……

1b。 学习机会 (1b. Opportunity to Learn)

During my last stint as a computationally-focused research student, we had two options when it came to running simulations and/or processing data.

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值