计算机数学基础章节内容,计算机数学基础(下)数值部分辅导.doc

计算机数学基础(下)数值部分辅导

《计算机数学基础(下)》数值部分辅导(3)

中央电大 冯泰

第11章 函数插值与最小二乘拟合

一、重点内容

1. 函数插值

已知函数f(x)的n个函数值yk=f(xk), k=0,1,2,…,n。构造一个多项式P(x),使得

P(xk)=yk。P(x)就是插值多项式,f(x)就是被插函数,xk就是插值节点。误差R(x)=f (x)-P(x)。

2. 拉格朗日多项式

用n次多项式 Pn(x)=y0l0+y1l1+…+ynln=

其中基函数

当n=1时,线性插值 P1(x)=yk lk (x)+yk+1 lk+1 (x)

其中基函数 ,。

当n=2时,得到二次多项式,就是二次插值。

拉格朗日插值多项式的余项为

其中

注意:过n+1个互异点,所得的多项式应该是次数不超过n的多项式。

3. 均差与牛顿插值多项式

函数值与自变量的差商就是均差,

一阶均差 (或记作f [x0,x1]);

二阶均差 (或记作f [x0,x1,x2])

均差有两条常用性质:(1)均差用函数值的线性组合表示;(2)均差与插值节点顺序无关。

用均差为系数构造多项式,就是牛顿插值多项式

Nn(x)= f(x0)+f(x0,x1)(x-x0)+f(x0,x1,x2)(x-x0)(x-x1)+

…+f(x0,x1,x2,…,xn)(x-x0)(x-x1)(x-x2)…(x-xn-1)

牛顿插值多项式的余项为

Rn(x)=f(x)-Nn(x) =f(x,x0,x1,x2,…,xn)(x-x0)(x-x1)(x-x2)…(x-xn-1)(x-xn)4. 分段线性插值

已知n+1个互异节点x,x1,…,xn,构造一个分段一次的多项式P(x),且满足:(1)P(x)在[a ,b]上连续; (2) P(xk)=yk(k=0,1,2,…,n); (3)P(x)在[xk ,xk+1]上是线性函数。

分段线性插值函数

其中lk(x)(k=0,1,2,…,n)是分段线性插值基函数.

li(x)=

ln(x)=

5. 三次样条插值函数

其中S((xk)=mk(k=0,1,2,…,n), hk=xk+1-xk(k=0,1,2,…,n-1)…,mn满足的方程组是

(*)

其中: ,

(k=1,2,…,n-1)

(1) 当已知S((x0)=y(0 ,S((xn)=(y(n时,(*)式中

(0=1, (n=1, .

(2) 当已知S((x0)=y(0=m0, S((xn)=y(n=mn时,(*)式化为

6. 最小二乘法

用((x)拟合数据(xk,yk) (k=1,2,…,n),使得误差的平方和

为最小,求((x)的方法,称为最小二乘法。

(1) 直线拟合 若,a0,a1满足法方程组

(2) 二次多项式拟合 若满足法方程组

二、实例

例1 已知函数y=f(x)的观察数据为

xk-2045yk51-31试构造拉格朗日多项式Pn (x),并计算P(-1)。

[只给4对数据,求得的多项式不超过3次]

解 先构造基函数

所求三次多项式为

P3(x)=

=+-+

P3(-1)=

例2 已知函数y=f(x)的数据如表中第1,2列。计算它的各阶均差。

解 依据均差计算公式,结果列表中。

kXkf(xk)一阶均差二阶均差三阶均差四阶均差 00.400.410 75 10.550.578 151.116 00 20.650.696 751.168 000.280 00 30.800.888 111.275 730.358 930.197 33 40.901.201 521.384 100.433 480.213 000.031 34计算公式为

一阶均差

二阶均差

三阶均差

四阶均差

例3 设是n+1个互异的插值节点,是拉格朗日插值基函数,证明:

(1) (2)

证明 (1) Pn(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值